No Arabic abstract
The instrumental advances made in this new era of 4-meter class solar telescopes with unmatched spectropolarimetric accuracy and sensitivity, will enable the study of chromospheric magnetic fields and their dynamics with unprecedented detail. In this regard, spectropolarimetric diagnostics can provide invaluable insight into magneto-hydrodynamic (MHD) wave processes. MHD waves and, in particular, Alfvenic fluctuations associated to particular wave modes, were recently recognized as important mechanisms not only for the heating of the outer layers of the Suns atmosphere and the acceleration of the solar wind, but also for the elemental abundance anomaly observed in the corona of the Sun and other Sun-like stars (also known as first ionisation potential; FIP) effect. Here, we take advantage of state-of-the-art and unique spectropolarimetric IBIS observations to investigate the relation between intensity and circular polarisation (CP) fluctuations in a sunspot chromosphere. Our results show a clear link between the intensity and CP fluctuations in a patch which corresponds to a narrow range of magnetic field inclinations. This suggests the presence of Alfvenic perturbations in the sunspot.
We present results derived from the analysis of spectropolarimetric measurements of active region AR12546, which represents one of the largest sunspots to have emerged onto the solar surface over the last $20$ years. The region was observed with full-Stokes scans of the Fe I 617.3 nm and Ca II 854.2 nm lines with the Interferometric BIdimensional Spectrometer (IBIS) instrument at the Dunn Solar Telescope over an uncommon, extremely long time interval exceeding three hours. Clear circular polarization (CP) oscillations localized at the umbra-penumbra boundary of the observed region were detected. Furthermore, the multi-height data allowed us to detect the downward propagation of both CP and intensity disturbances at $2.5-3$~mHz, which was identified by a phase delay between these two quantities. These results are interpreted as a propagating magneto-hydrodynamic surface mode in the observed sunspot.
In this study, we investigate the spatial distribution of highly varying plasma composition around one of the largest sunspots of solar cycle 24. Observations of the photosphere, chromosphere, and corona are brought together with magnetic field modelling of the sunspot in order to probe the conditions which regulate the degree of plasma fractionation within loop populations of differing connectivities. We find that in the coronal magnetic field above the sunspot umbra, the plasma has photospheric composition. Coronal loops rooted in the penumbra contain fractionated plasma, with the highest levels observed in the loops that connect within the active region. Tracing field lines from regions of fractionated plasma in the corona to locations of Alfvenic fluctuations detected in the chromosphere shows that they are magnetically linked. These results indicate a connection between sunspot chromospheric activity and observable changes in coronal plasma composition.
We study the dynamics of shock waves observed in the umbra of a sunspot using the spectroscopic observations from the Interface Region Imaging Spectrometer (IRIS). The presence of the shock significantly deforms the shape of the spectral lines of Mg II , C II , and Si IV . We found that C II 1335.66 {AA} and Si IV 1393.75 {AA} show double-peaked profiles that change to a single peak later on. However, the Mg II h 2803.53 {AA} line first shows flat-top profiles that change into double-peaked followed by the single peak. To study the shock dynamics, we isolate the shock component from the spectra by fitting two Gaussians. We find that the lifetime of the shock is largest in Mg II h 2803.53 {AA} line. Moreover, the plasma motion shows both acceleration and deceleration phase of the shock. Yet, in C II 1335.66 {AA} and Si IV 1393.75 {AA}, only deceleration phase is observed. We observe a strong correlation between the largest blueshift of the shock and deceleration for all three spectral lines. We find a positive (negative) correlation between intensities contributed due to the shocks in Mg II and C II (Si IV ). This is suggestive that the shocks are first amplified in C II , followed by a decline in the height range corresponding to Si IV . These results may indicate the dissipation of shocks above the formation height of C II , and the shocks may have important roles in the dynamics of the upper chromosphere and transition region above sunspots.
We investigate the magnetic field of a sunspot in the upper chromosphere and compare it to the fields photospheric properties. We observed the main leading sunspot of the active region NOAA 11124 on two days with the Tenrife Infrared Polarimeter-2 (TIP-2) mounted at the German Vacuum Tower Telescope (VTT). Through inversion of Stokes spectra of the He I triplet at 1083.0 nm, we obtained the magnetic field vector of the upper chromosphere. For comparison with the photosphere we applied height-depended
Context. The solar chromosphere and the lower transition region is believed to play a crucial role in the heating of the solar corona. Models that describe the chromosphere (and the lower transition region), accounting for its highly dynamic and structured character are, so far, found to be lacking. This is partly due to the breakdown of complete frequency redistribution in the chromospheric layers and also because of the difficulty in obtaining complete sets of observations that adequately constrain the solar atmosphere at all relevant heights. Aims. We aim to obtain semi-empirical model atmospheres that reproduce the features of the Mg II h&k line profiles that sample the middle chromosphere with focus on a sunspot. Methods. We use spectropolarimetric observations of the Ca II 8542 A spectra obtained with the Swedish 1-m Solar Telescope (SST) and use NICOLE