Do you want to publish a course? Click here

High field charge order across the phase diagram of $YBa_2Cu_3O_y$

76   0   0.0 ( 0 )
 Added by Cyril Proust
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In hole-doped cuprates there is now compelling evidence that inside the pseudogap phase, charge order breaks translational symmetry leading to a reconstruction of the Fermi surface. In $YBa_2Cu_3O_y$ charge order emerges in two steps: a 2D order found at zero field and at high temperature inside the pseudogap phase, and a 3D order that is superimposed below the superconducting transition $T_c$ when superconductivity is weakened by a magnetic field. Several issues still need to be addressed such as the effect of disorder, the relationship between those charge orders and their respective impact on the Fermi surface. Here, we report high magnetic field sound velocity measurements of the 3D charge order in underdoped $YBa_2Cu_3O_y$ in a large doping range. We found that the 3D charge order exists over the same doping range as its 2D counterpart, indicating an intimate connection between the two distinct orders. Moreover, we argue that the Fermi surface is reconstructed above the onset temperature of 3D charge order.



rate research

Read More

141 - Joerg Fink 2021
In a recent paper by Husain et al. [PRX 9, 041062 (2019)], the two-particle electronic excitations in Bi2Sr2CaCu2O8+x have been studied by Electron Energy-Loss Spectroscopy in reflection (R-EELS) in the strange metal range between underdoped and overdoped materials. The authors conclude that there are no well defined plasmons. Rather they obtain a momentum-independent continuum which they discuss in terms of holographic theories. In this Comment it is pointed out that the experimental results are in stark contrast to previous EELS in transmission (T-EELS), Resonant Inelastic X-ray Scattering (RIXS), and optical studies. The differences can be probably explained by an inaccurate momentum scale in the R-EELS experiments. Furthermore, it is shown, that many material specific experimental results from T-EELS, R-EELS, RIXS, and optical spectroscopy can be explained by a more traditional extended Lindhard model. This model describes the energy, the width, and the dispersion of normal and acoustic plasmons in cuprates, as well as the continuum. The latter is explained by electron-hole excitations inside a lifetime broadened conduction band. This continuum is directly related to the scattering rates of the charge carriers, which in turn, by a feed back process, lead to the continuum.
The interplay between superconductivity and any other competing order is an essential part of the long-standing debate on the origin of high temperature superconductivity in cuprates. Akin to the situation of heavy fermions, organic superconductors and pnictides, it has been proposed that the pairing mechanism in cuprates comes from fluctuations of a nearby quantum phase transition. Recent evidence of charge modulation and the associated fluctuations in the pseudogap phase of YBa_2Cu_3O_y make charge order a likely candidate for a competing order. However, a thermodynamic signature of the charge ordering phase transition is still lacking. Moreover, whether such charge order is one- or two-dimensional is still controversial but pivotal for the understanding the topology of the reconstructed Fermi surface. Here we address both issues by measuring sound velocities in YBCO_6.55 in high magnetic fields, a powerful thermodynamic probe to detect phase transitions. We provide the first thermodynamic signature of the field-induced charge ordering phase transition in YBCO allowing construction of a field-temperature phase diagram, which reveals the competing nature of this charge order. The comparison of different acoustic modes indicates that the charge modulation has a two-dimensional character, thus imposing strong constraints on Fermi surface reconstruction scenarios.
Here, we report an overview of the phase diagram of single layered and double layered Fe arsenide superconductors at high magnetic fields. Our systematic magnetotransport measurements of polycrystalline SmFeAsO$_{1-x}$F$_x$ at different doping levels confirm the upward curvature of the upper critical magnetic field $H_{c2}(T)$ as a function of temperature $T$ defining the phase boundary between the superconducting and metallic states for crystallites with the ab planes oriented nearly perpendicular to the magnetic field. We further show from measurements on single crystals that this feature, which was interpreted in terms of the existence of two superconducting gaps, is ubiquitous among both series of single and double layered compounds. In all compounds explored by us the zero temperature upper critical field $H_{c2}(0)$, estimated either through the Ginzburg-Landau or the Werthamer-Helfand-Hohenberg single gap theories, strongly surpasses the weak coupling Pauli paramagnetic limiting field. This clearly indicates the strong coupling nature of the superconducting state and the importance of magnetic correlations for these materials. Our measurements indicate that the superconducting anisotropy, as estimated through the ratio of the effective masses $gamma = (m_c/m_{ab})^{1/2}$ for carriers moving along the c-axis and the ab planes, respectively, is relatively modest as compared to the high-$T_c$ cuprates, but it is temperature, field and even doping dependent. Finally, our preliminary estimations of the irreversibility field $H_m(T)$, separating the vortex-solid from the vortex-liquid phase in the single layered compounds, indicates that it is well described by the melting of a vortex lattice in a moderately anisotropic uniaxial superconductor.
The experimentally measured phase diagram of cuprate superconductors in the temperature-applied magnetic field plane illuminates key issues in understanding the physics of these materials. At low temperature, the superconducting state gives way to a long-range charge order with increasing magnetic field; both the orders coexist in a small intermediate region. The charge order transition is strikingly insensitive to temperature, and quickly reaches a transition temperature close to the zero-field superconducting $T_c$. We argue that such a transition along with the presence of the coexisting phase cannot be described simply by a competing orders formalism. We demonstrate that for some range of parameters there is an enlarged symmetry of the strongly coupled charge and superconducting orders in the system depending on their relative masses and the coupling strength of the two orders. We establish that this sharp switch from the superconducting phase to the charge order phase can be understood in the framework of a composite SU(2) order parameter comprising the charge and superconducting orders. Finally, we illustrate that there is a possibility of the coexisting phase of the competing charge and superconducting orders only when the SU(2) symmetry between them is weakly broken due to biquadratic terms in the free energy. The relation of this sharp transition to the proximity to the pseudogap quantum critical doping is also discussed.
A normal metal exhibits a valence plasmon, which is a sound wave in its conduction electron density. The mysterious strange metal is characterized by non-Boltzmann transport and violates most fundamental Fermi liquid scaling laws. A fundamental question is: Do strange metals have plasmons? Using momentum-resolved inelastic electron scattering (M-EELS) we recently showed that, rather than a plasmon, optimally-doped Bi$_{2.1}$Sr$_{1.9}$Ca$_{1.0}$Cu$_{2.0}$O$_{8+x}$ (Bi-2212) exhibits a featureless, temperature-independent continuum with a power-law form over most energy and momentum scales [M. Mitrano, PNAS 115, 5392-5396 (2018)]. Here, we show that this continuum is present throughout the fan-shaped, strange metal region of the phase diagram. Outside this region, dramatic changes in spectral weight are observed: In underdoped samples, spectral weight up to 0.5 eV is enhanced at low temperature, biasing the system towards a charge order instability. The situation is reversed in the overdoped case, where spectral weight is strongly suppressed at low temperature, increasing quasiparticle coherence in this regime. Optimal doping corresponds to the boundary between these two opposite behaviors at which the response is temperature-independent. Our study suggests that plasmons do not exist as well-defined excitations in Bi-2212, and that a featureless continuum is a defining property of the strange metal, which is connected to a peculiar crossover where the spectral weight change undergoes a sign reversal.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا