Do you want to publish a course? Click here

Thermodynamic phase diagram of static charge order in underdoped YBCO

176   0   0.0 ( 0 )
 Added by David LeBoeuf
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The interplay between superconductivity and any other competing order is an essential part of the long-standing debate on the origin of high temperature superconductivity in cuprates. Akin to the situation of heavy fermions, organic superconductors and pnictides, it has been proposed that the pairing mechanism in cuprates comes from fluctuations of a nearby quantum phase transition. Recent evidence of charge modulation and the associated fluctuations in the pseudogap phase of YBa_2Cu_3O_y make charge order a likely candidate for a competing order. However, a thermodynamic signature of the charge ordering phase transition is still lacking. Moreover, whether such charge order is one- or two-dimensional is still controversial but pivotal for the understanding the topology of the reconstructed Fermi surface. Here we address both issues by measuring sound velocities in YBCO_6.55 in high magnetic fields, a powerful thermodynamic probe to detect phase transitions. We provide the first thermodynamic signature of the field-induced charge ordering phase transition in YBCO allowing construction of a field-temperature phase diagram, which reveals the competing nature of this charge order. The comparison of different acoustic modes indicates that the charge modulation has a two-dimensional character, thus imposing strong constraints on Fermi surface reconstruction scenarios.



rate research

Read More

The electrical resistivity rho_c of the underdoped cuprate superconductor YBCO was measured perpendicular to the CuO_2 planes on ultra-high quality single crystals in magnetic fields large enough to suppress superconductivity. The incoherent insulating-like behavior of rho_c at high temperature, characteristic of all underdoped cuprates, is found to cross over to a coherent regime of metallic behavior at low temperature. This crossover coincides with the emergence of the small electron pocket detected in the Fermi surface of YBCO via quantum oscillations, the Hall and Seebeck coefficients and with the detection of a unidirectional modulation of the charge density as seen by high-field NMR measurements. The low coherence temperature is quantitatively consistent with the small hopping integral t_perp inferred from the splitting of the quantum oscillation frequencies. We conclude that the Fermi-surface reconstruction in YBCO at dopings from p = 0.08 to at least p = 0.15, attributed to stripe order, produces a metallic state with 3D coherence deep in the underdoped regime.
141 - H. Jang , W.-S. Lee , S. Song 2018
The recently demonstrated x-ray scattering approach using a free electron laser with a high field pulsed magnet has opened new opportunities to explore the charge density wave (CDW) order in cuprate high temperature superconductors. Using this approach, we substantially degrade the superconductivity with magnetic fields up to 33 T to investigate the onset of CDW order in YBa$_2$Cu$_3$O$_x$ at low temperatures near a putative quantum critical point (QCP) at $p_1sim $ 0.08 holes per Cu. We find no CDW can be detected in a sample with a doping concentration less than $p_1$. Our results indicate that the onset of the CDW ground state lies inside the zero-field superconducting dome, and broken translational symmetry is associated with the putative QCP at $p_1$
87 - V. Thampy , X. M. Chen , Y. Cao 2017
Charge density wave (CDW) correlations feature prominently in the phase diagram of the cuprates, motivating competing theories of whether fluctuating CDW correlations aid superconductivity or whether static CDW order coexists with superconductivity in inhomogeneous or spatially modulated states. Here we report Cu $L$-edge resonant x-ray photon correlation spectroscopy (XPCS) measurements of CDW correlations in superconducting La$_{2-x}$Ba$_x$CuO$_4$ $x=0.11$. Static CDW order is shown to exist in the superconducting state at low temperatures and to persist up to at least 85% of the CDW transition temperature. We discuss the implications of our observations for how emph{nominally} competing order parameters can coexist in the cuprates.
In a multiorbital model of the cuprate high-temperature superconductors soft antiferromagnetic (AF) modes are assumed to reconstruct the Fermi surface to form nodal pockets. The subsequent charge ordering transition leads to a phase with a spatially modulated transfer of charge between neighboring oxygen p_x and p_y orbitals and also weak modulations of the charge density on the copper d_{x^2-y^2} orbitals. As a prime result of the AF Fermi surface reconstruction, the wavevectors of the charge modulations are oriented along the crystalline axes with a periodicity that agrees quantitatively with experiments. This resolves a discrepancy between experiments, which find axial order, and previous theoretical calculations, which find modulation wavevectors along the Brillouin zone (BZ) diagonal. The axial order is stabilized by hopping processes via the Cu4s orbital, which is commonly not included in model analyses of cuprate superconductors.
The normal state of cuprates is dominated by the strange metal phase that, near optimal doping, shows a linear temperature dependence of the resistivity persisting down to the lowest $T$, when superconductivity is suppressed. For underdoped cuprates this behavior is lost below the pseudogap temperature $T$*, where Charge Density Waves(CDW) together with other intertwined local orders characterize the ground state. Here we show that the $T$-linear resistivity of highly strained, ultrathin and underdoped YBa$_2$Cu$_3$O$_{7-delta}$ films is restored when the CDW amplitude, detected by Resonant Inelastic X-ray scattering, is suppressed. This observation points towards an intimate connection between the onset of CDW and the departure from $T$-linear resistivity in underdoped cuprates, a link that was missing until now. It also illustrates the potentiality of strain control to manipulate the ground state of quantum materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا