Do you want to publish a course? Click here

Active Sampling for Constrained Simulation-based Verification of Uncertain Nonlinear Systems

75   0   0.0 ( 0 )
 Added by John Quindlen
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Increasingly demanding performance requirements for dynamical systems motivates the adoption of nonlinear and adaptive control techniques. One challenge is the nonlinearity of the resulting closed-loop system complicates verification that the system does satisfy the requirements at all possible operating conditions. This paper presents a data-driven procedure for efficient simulation-based, statistical verification without the reliance upon exhaustive simulations. In contrast to previous work, this approach introduces a method for online estimation of prediction accuracy without the use of external validation sets. This work also develops a novel active sampling algorithm that iteratively selects additional training points in order to maximize the accuracy of the predictions while still limited to a sample budget. Three case studies demonstrate the utility of the new approach and the results show up to a 50% improvement over state-of-the-art techniques.



rate research

Read More

A novel adaptive control approach is proposed to solve the globally asymptotic state stabilization problem for uncertain pure-feedback nonlinear systems which can be transformed into the pseudo-affine form. The pseudo-affine pure-feedback nonlinear system under consideration is with non-linearly parameterised uncertainties and possibly unknown control coefficients. Based on the parameter separation technique, a backstepping controller is designed by adopting the adaptive high gain idea. The rigorous stability analysis shows that the proposed controller could guarantee, for any initial system condition, boundedness of the closed-loop signals and globally asymptotic stabilization of the state. A numerical and a realistic examples are employed to demonstrate the effectiveness of the proposed control method.
178 - Yutao Tang , Ding Wang 2020
In this paper, we investigate a constrained optimal coordination problem for a class of heterogeneous nonlinear multi-agent systems described by high-order dynamics subject to both unknown nonlinearities and external disturbances. Each agent has a private objective function and a constraint about its output. A neural network-based distributed controller is developed for each agent such that all agent outputs can reach the constrained minimal point of the aggregate objective function with bounded residual errors. Two examples are finally given to demonstrate the effectiveness of the algorithm.
We present a sample-based Learning Model Predictive Controller (LMPC) for constrained uncertain linear systems subject to bounded additive disturbances. The proposed controller builds on earlier work on LMPC for deterministic systems. First, we introduce the design of the safe set and value function used to guarantee safety and performance improvement. Afterwards, we show how these quantities can be approximated using noisy historical data. The effectiveness of the proposed approach is demonstrated on a numerical example. We show that the proposed LMPC is able to safely explore the state space and to iteratively improve the worst-case closed-loop performance, while robustly satisfying state and input constraints.
A new approach for robust Hinfty filtering for a class of Lipschitz nonlinear systems with time-varying uncertainties both in the linear and nonlinear parts of the system is proposed in an LMI framework. The admissible Lipschitz constant of the system and the disturbance attenuation level are maximized simultaneously through convex multiobjective optimization. The resulting Hinfty filter guarantees asymptotic stability of the estimation error dynamics with exponential convergence and is robust against nonlinear additive uncertainty and time-varying parametric uncertainties. Explicit bounds on the nonlinear uncertainty are derived based on norm-wise and element-wise robustness analysis.
In this work, we perform safety analysis of linear dynamical systems with uncertainties. Instead of computing a conservative overapproximation of the reachable set, our approach involves computing a statistical approximate reachable set. As a result, the guarantees provided by our method are probabilistic in nature. In this paper, we provide two different techniques to compute statistical approximate reachable set. We have implemented our algorithms in a python based prototype and demonstrate the applicability of our approaches on various case studies. We also provide an empirical comparison between the two proposed methods and with Flow*.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا