Do you want to publish a course? Click here

The topological face of recommendation: models and application to bias detection

61   0   0.0 ( 0 )
 Added by Erwan Le Merrer
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Recommendation plays a key role in e-commerce and in the entertainment industry. We propose to consider successive recommendations to users under the form of graphs of recommendations. We give models for this representation. Motivated by the growing interest for algorithmic transparency, we then propose a first application for those graphs, that is the potential detection of introduced recommendation bias by the service provider. This application relies on the analysis of the topology of the extracted graph for a given user; we propose a notion of recommendation coherence with regards to the topological proximity of recommended items (under the measure of items k-closest neighbors, reminding the small-world model by Watts & Stroggatz). We finally illustrate this approach on a model and on Youtube crawls, targeting the prediction of Recommended for you links (i.e., biased or not by Youtube).



rate research

Read More

During the last months, there is an increasing alarm about a new mutation of coronavirus, covid-19 coined by World Health Organization(WHO) with an impact in many areas: economy, health, politics and others. This situation was declared a pandemic by WHO, because of the fast expansion over many countries. At the same time, people is using Social Networks to express what they think, feel or experiment, so this people are Social Sensors and helps to analyze what is happening in their city. The objective of this paper is analyze the publications of Colombian people living in Bogota with a radius of 50 km using Text Mining techniques from symptomatology approach. The results support the understanding of the spread in Colombia related to symptoms of covid19.
76 - Zo Ahmed , Bertie Vidgen , 2021
Online hate is a growing concern on many social media platforms and other sites. To combat it, technology companies are increasingly identifying and sanctioning `hateful users rather than simply moderating hateful content. Yet, most research in online hate detection to date has focused on hateful content. This paper examines how fairer and more accurate hateful user detection systems can be developed by incorporating social network information through geometric deep learning. Geometric deep learning dynamically learns information-rich network representations and can generalise to unseen nodes. This is essential for moving beyond manually engineered network features, which lack scalability and produce information-sparse network representations. This paper compares the accuracy of geometric deep learning with other techniques which either exclude network information or incorporate it through manual feature engineering (e.g., node2vec). It also evaluates the fairness of these techniques using the `predictive equality criteria, comparing the false positive rates on a subset of 136 African-American users with 4836 other users. Geometric deep learning produces the most accurate and fairest classifier, with an AUC score of 90.8% on the entire dataset and a false positive rate of zero among the African-American subset for the best performing model. This highlights the benefits of more effectively incorporating social network features in automated hateful user detection. Such an approach is also easily operationalized for real-world content moderation as it has an efficient and scalable design.
A large amount of content is generated everyday in social media. One of the main goals of content creators is to spread their information to a large audience. There are many factors that affect information spread, such as posting time, location, type of information, number of social connections, etc. In this paper, we look at the problem of finding the best posting time(s) to get high content visibility. The posting time is derived taking other factors into account, such as location, type of information, etc. In this paper, we do our analysis over Facebook pages. We propose six posting schedules that can be used for individual pages or group of pages with similar audience reaction profile. We perform our experiment on a Facebook pages dataset containing 0.3 million posts, 10 million audience reactions. Our best posting schedule can lead to seven times more number of audience reactions compared to the average number of audience reactions that users would get without following any optimized posting schedule. We also present some interesting audience reaction patterns that we obtained through daily, weekly and monthly audience reaction analysis.
Social learning, i.e., students learning from each other through social interactions, has the potential to significantly scale up instruction in online education. In many cases, such as in massive open online courses (MOOCs), social learning is facilitated through discussion forums hosted by course providers. In this paper, we propose a probabilistic model for the process of learners posting on such forums, using point processes. Different from existing works, our method integrates topic modeling of the post text, timescale modeling of the decay in post activity over time, and learner topic interest modeling into a single model, and infers this information from user data. Our method also varies the excitation levels induced by posts according to the thread structure, to reflect typical notification settings in discussion forums. We experimentally validate the proposed model on three real-world MOOC datasets, with the largest one containing up to 6,000 learners making 40,000 posts in 5,000 threads. Results show that our model excels at thread recommendation, achieving significant improvement over a number of baselines, thus showing promise of being able to direct learners to threads that they are interested in more efficiently. Moreover, we demonstrate analytics that our model parameters can provide, such as the timescales of different topic categories in a course.
Information overload in the modern society calls for highly efficient recommendation algorithms. In this letter we present a novel diffusion based recommendation model, with users ratings built into a transition matrix. To speed up computation we introduce a Green function method. The numerical tests on a benchmark database show that our prediction is superior to the standard recommendation methods.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا