Do you want to publish a course? Click here

Complex spectrogram enhancement by convolutional neural network with multi-metrics learning

221   0   0.0 ( 0 )
 Added by Szu-Wei Fu
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

This paper aims to address two issues existing in the current speech enhancement methods: 1) the difficulty of phase estimations; 2) a single objective function cannot consider multiple metrics simultaneously. To solve the first problem, we propose a novel convolutional neural network (CNN) model for complex spectrogram enhancement, namely estimating clean real and imaginary (RI) spectrograms from noisy ones. The reconstructed RI spectrograms are directly used to synthesize enhanced speech waveforms. In addition, since log-power spectrogram (LPS) can be represented as a function of RI spectrograms, its reconstruction is also considered as another target. Thus a unified objective function, which combines these two targets (reconstruction of RI spectrograms and LPS), is equivalent to simultaneously optimizing two commonly used objective metrics: segmental signal-to-noise ratio (SSNR) and logspectral distortion (LSD). Therefore, the learning process is called multi-metrics learning (MML). Experimental results confirm the effectiveness of the proposed CNN with RI spectrograms and MML in terms of improved standardized evaluation metrics on a speech enhancement task.



rate research

Read More

Speech enhancement model is used to map a noisy speech to a clean speech. In the training stage, an objective function is often adopted to optimize the model parameters. However, in most studies, there is an inconsistency between the model optimization criterion and the evaluation criterion on the enhanced speech. For example, in measuring speech intelligibility, most of the evaluation metric is based on a short-time objective intelligibility (STOI) measure, while the frame based minimum mean square error (MMSE) between estimated and clean speech is widely used in optimizing the model. Due to the inconsistency, there is no guarantee that the trained model can provide optimal performance in applications. In this study, we propose an end-to-end utterance-based speech enhancement framework using fully convolutional neural networks (FCN) to reduce the gap between the model optimization and evaluation criterion. Because of the utterance-based optimization, temporal correlation information of long speech segments, or even at the entire utterance level, can be considered when perception-based objective functions are used for the direct optimization. As an example, we implement the proposed FCN enhancement framework to optimize the STOI measure. Experimental results show that the STOI of test speech is better than conventional MMSE-optimized speech due to the consistency between the training and evaluation target. Moreover, by integrating the STOI in model optimization, the intelligibility of human subjects and automatic speech recognition (ASR) system on the enhanced speech is also substantially improved compared to those generated by the MMSE criterion.
85 - Szu-Wei Fu , Yu Tsao , Xugang Lu 2017
This study proposes a fully convolutional network (FCN) model for raw waveform-based speech enhancement. The proposed system performs speech enhancement in an end-to-end (i.e., waveform-in and waveform-out) manner, which dif-fers from most existing denoising methods that process the magnitude spectrum (e.g., log power spectrum (LPS)) only. Because the fully connected layers, which are involved in deep neural networks (DNN) and convolutional neural networks (CNN), may not accurately characterize the local information of speech signals, particularly with high frequency components, we employed fully convolutional layers to model the waveform. More specifically, FCN consists of only convolutional layers and thus the local temporal structures of speech signals can be efficiently and effectively preserved with relatively few weights. Experimental results show that DNN- and CNN-based models have limited capability to restore high frequency components of waveforms, thus leading to decreased intelligibility of enhanced speech. By contrast, the proposed FCN model can not only effectively recover the waveforms but also outperform the LPS-based DNN baseline in terms of short-time objective intelligibility (STOI) and perceptual evaluation of speech quality (PESQ). In addition, the number of model parameters in FCN is approximately only 0.2% compared with that in both DNN and CNN.
127 - Sercan O. Arik , Heewoo Jun , 2018
We propose the multi-head convolutional neural network (MCNN) architecture for waveform synthesis from spectrograms. Nonlinear interpolation in MCNN is employed with transposed convolution layers in parallel heads. MCNN achieves more than an order of magnitude higher compute intensity than commonly-used iterative algorithms like Griffin-Lim, yielding efficient utilization for modern multi-core processors, and very fast (more than 300x real-time) waveform synthesis. For training of MCNN, we use a large-scale speech recognition dataset and losses defined on waveforms that are related to perceptual audio quality. We demonstrate that MCNN constitutes a very promising approach for high-quality speech synthesis, without any iterative algorithms or autoregression in computations.
Due to the simple design pipeline, end-to-end (E2E) neural models for speech enhancement (SE) have attracted great interest. In order to improve the performance of the E2E model, the locality and temporal sequential properties of speech should be efficiently taken into account when modelling. However, in most current E2E models for SE, these properties are either not fully considered or are too complex to be realized. In this paper, we propose an efficient E2E SE model, termed WaveCRN. In WaveCRN, the speech locality feature is captured by a convolutional neural network (CNN), while the temporal sequential property of the locality feature is modeled by stacked simple recurrent units (SRU). Unlike a conventional temporal sequential model that uses a long short-term memory (LSTM) network, which is difficult to parallelize, SRU can be efficiently parallelized in calculation with even fewer model parameters. In addition, in order to more effectively suppress the noise components in the input noisy speech, we derive a novel restricted feature masking (RFM) approach that performs enhancement on the feature maps in the hidden layers; this is different from the approach that applies the estimated ratio mask on the noisy spectral features, which is commonly used in speech separation methods. Experimental results on speech denoising and compressed speech restoration tasks confirm that with the lightweight architecture of SRU and the feature-mapping-based RFM, WaveCRN performs comparably with other state-of-the-art approaches with notably reduced model complexity and inference time.
Cover song identification represents a challenging task in the field of Music Information Retrieval (MIR) due to complex musical variations between query tracks and cov

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا