Do you want to publish a course? Click here

WaveCRN: An Efficient Convolutional Recurrent Neural Network for End-to-end Speech Enhancement

100   0   0.0 ( 0 )
 Added by Tsun-An Hsieh
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Due to the simple design pipeline, end-to-end (E2E) neural models for speech enhancement (SE) have attracted great interest. In order to improve the performance of the E2E model, the locality and temporal sequential properties of speech should be efficiently taken into account when modelling. However, in most current E2E models for SE, these properties are either not fully considered or are too complex to be realized. In this paper, we propose an efficient E2E SE model, termed WaveCRN. In WaveCRN, the speech locality feature is captured by a convolutional neural network (CNN), while the temporal sequential property of the locality feature is modeled by stacked simple recurrent units (SRU). Unlike a conventional temporal sequential model that uses a long short-term memory (LSTM) network, which is difficult to parallelize, SRU can be efficiently parallelized in calculation with even fewer model parameters. In addition, in order to more effectively suppress the noise components in the input noisy speech, we derive a novel restricted feature masking (RFM) approach that performs enhancement on the feature maps in the hidden layers; this is different from the approach that applies the estimated ratio mask on the noisy spectral features, which is commonly used in speech separation methods. Experimental results on speech denoising and compressed speech restoration tasks confirm that with the lightweight architecture of SRU and the feature-mapping-based RFM, WaveCRN performs comparably with other state-of-the-art approaches with notably reduced model complexity and inference time.



rate research

Read More

147 - Xu Tan , Xiao-Lei Zhang 2020
Robust voice activity detection (VAD) is a challenging task in low signal-to-noise (SNR) environments. Recent studies show that speech enhancement is helpful to VAD, but the performance improvement is limited. To address this issue, here we propose a speech enhancement aided end-to-end multi-task model for VAD. The model has two decoders, one for speech enhancement and the other for VAD. The two decoders share the same encoder and speech separation network. Unlike the direct thought that takes two separated objectives for VAD and speech enhancement respectively, here we propose a new joint optimization objective -- VAD-masked scale-invariant source-to-distortion ratio (mSI-SDR). mSI-SDR uses VAD information to mask the output of the speech enhancement decoder in the training process. It makes the VAD and speech enhancement tasks jointly optimized not only at the shared encoder and separation network, but also at the objective level. It also satisfies real-time working requirement theoretically. Experimental results show that the multi-task method significantly outperforms its single-task VAD counterpart. Moreover, mSI-SDR outperforms SI-SDR in the same multi-task setting.
In this paper, in order to further deal with the performance degradation caused by ignoring the phase information in conventional speech enhancement systems, we proposed a temporal dilated convolutional generative adversarial network (TDCGAN) in the end-to-end based speech enhancement architecture. For the first time, we introduced the temporal dilated convolutional network with depthwise separable convolutions into the GAN structure so that the receptive field can be greatly increased without increasing the number of parameters. We also first explored the effect of signal-to-noise ratio (SNR) penalty item as regularization of the loss function of generator on improving the SNR of enhanced speech. The experimental results demonstrated that our proposed method outperformed the state-of-the-art end-to-end GAN-based speech enhancement. Moreover, compared with previous GAN-based methods, the proposed TDCGAN could greatly decreased the number of parameters. As expected, the work also demonstrated that the SNR penalty item as regularization was more effective than $L1$ on improving the SNR of enhanced speech.
Synthesized speech from articulatory movements can have real-world use for patients with vocal cord disorders, situations requiring silent speech, or in high-noise environments. In this work, we present EMA2S, an end-to-end multimodal articulatory-to-speech system that directly converts articulatory movements to speech signals. We use a neural-network-based vocoder combined with multimodal joint-training, incorporating spectrogram, mel-spectrogram, and deep features. The experimental results confirm that the multimodal approach of EMA2S outperforms the baseline system in terms of both objective evaluation and subjective evaluation metrics. Moreover, results demonstrate that joint mel-spectrogram and deep feature loss training can effectively improve system performance.
In this paper, we present an end-to-end training framework for building state-of-the-art end-to-end speech recognition systems. Our training system utilizes a cluster of Central Processing Units(CPUs) and Graphics Processing Units (GPUs). The entire data reading, large scale data augmentation, neural network parameter updates are all performed on-the-fly. We use vocal tract length perturbation [1] and an acoustic simulator [2] for data augmentation. The processed features and labels are sent to the GPU cluster. The Horovod allreduce approach is employed to train neural network parameters. We evaluated the effectiveness of our system on the standard Librispeech corpus [3] and the 10,000-hr anonymized Bixby English dataset. Our end-to-end speech recognition system built using this training infrastructure showed a 2.44 % WER on test-clean of the LibriSpeech test set after applying shallow fusion with a Transformer language model (LM). For the proprietary English Bixby open domain test set, we obtained a WER of 7.92 % using a Bidirectional Full Attention (BFA) end-to-end model after applying shallow fusion with an RNN-LM. When the monotonic chunckwise attention (MoCha) based approach is employed for streaming speech recognition, we obtained a WER of 9.95 % on the same Bixby open domain test set.
Neural Architecture Search (NAS), the process of automating architecture engineering, is an appealing next step to advancing end-to-end Automatic Speech Recognition (ASR), replacing expert-designed networks with learned, task-specific architectures. In contrast to early computational-demanding NAS methods, recent gradient-based NAS methods, e.g., DARTS (Differentiable ARchiTecture Search), SNAS (Stochastic NAS) and ProxylessNAS, significantly improve the NAS efficiency. In this paper, we make two contributions. First, we rigorously develop an efficient NAS method via Straight-Through (ST) gradients, called ST-NAS. Basically, ST-NAS uses the loss from SNAS but uses ST to back-propagate gradients through discrete variables to optimize the loss, which is not revealed in ProxylessNAS. Using ST gradients to support sub-graph sampling is a core element to achieve efficient NAS beyond DARTS and SNAS. Second, we successfully apply ST-NAS to end-to-end ASR. Experiments over the widely benchmarked 80-hour WSJ and 300-hour Switchboard datasets show that the ST-NAS induced architectures significantly outperform the human-designed architecture across the two datasets. Strengths of ST-NAS such as architecture transferability and low computation cost in memory and time are also reported.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا