Do you want to publish a course? Click here

Lasing in topological edge states of a 1D lattice

194   0   0.0 ( 0 )
 Added by Philippe St-Jean
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Topology describes properties that remain unaffected by smooth distortions. Its main hallmark is the emergence of edge states localized at the boundary between regions characterized by distinct topological invariants. This feature offers new opportunities for robust trapping of light in nano- and micro-meter scale systems subject to fabrication imperfections and to environmentally induced deformations. Here we show lasing in such topological edge states of a one-dimensional lattice of polariton micropillars that implements an orbital version of the Su-Schrieffer-Heeger Hamiltonian. We further demonstrate that lasing in these states persists under local deformations of the lattice. These results open the way to the implementation of chiral lasers in systems with broken time-reversal symmetry and, when combined with polariton interactions, to the study of nonlinear topological photonics.



rate research

Read More

Nonlinear topological photonics is an emerging field aiming at extending the fascinating properties of topological states to the realm where interactions between the system constituents cannot be neglected. Interactions can indeed trigger topological phase transitions, induce symmetry protection and robustness properties for the many-body system. Moreover when coupling to the environment via drive and dissipation is also considered, novel collective phenomena are expected to emerge. Here, we report the nonlinear response of a polariton lattice implementing a non-Hermitian version of the Su-Schrieffer-Heeger model. We trigger the formation of solitons in the topological gap of the band structure, and show that these solitons demonstrate robust nonlinear properties with respect to defects, because of the underlying sub-lattice symmetry. Leveraging on the system non-Hermiticity, we engineer the drive phase pattern and unveil bulk solitons that have no counterpart in conservative systems. They are localized on a single sub-lattice with a spatial profile alike a topological edge state. Our results demonstrate a tool to stabilize the nonlinear response of driven dissipative topological systems, which may constitute a powerful resource for nonlinear topological photonics.
We predict the existence of non-Hermitian topologically protected end states in a one-dimensional exciton-polariton condensate lattice, where topological transitions are driven by the laser pump pattern. We show that the number of end states can be described by a Chern number and a topological invariant based on the Wilson loop. We find that such transitions arise due to {it enforced exceptional points} which can be predicted directly from the bulk Bloch wave functions. This allows us to establish a new type of bulk-boundary correspondence for non-Hermitian systems and to compute the phase diagram of an open chain analytically. Finally, we demonstrate topological lasing of a single end-mode in a realistic model of a microcavity lattice.
We study the interplay between disorder and topology for the localized edge states of light in topological zigzag arrays of resonant dielectric nanoparticles. We characterize topological properties by the winding number that depends on both zigzag angle and spacing between nanoparticles in the array. For equal-spacing arrays, the system may have two values of the winding number $ u=0$ or $1$, and it demonstrates localization at the edges even in the presence of disorder, being consistent with experimental observations for finite-length nanodisk structures. For staggered-spacing arrays, the system possesses richer topological phases characterized by the winding numbers $ u=0$, $1$ or $2$, which depend on the averaged zigzag angle and disorder strength. In a sharp contrast to the equal-spacing zigzag arrays, staggered-spacing arrays reveal two types of topological phase transitions induced by the angle disorder, (i) $ u = 0 leftrightarrow u = 1$ and (ii) $ u = 1 leftrightarrow u = 2$. More importantly, the spectrum of staggered-spacing arrays may remain gapped even in the case of a strong disorder.
We use split-ring resonators to demonstrate topologically protected edge states in the Su-Schieffer-Heeger model experimentally, but in a slow-light wave with the group velocity down to $sim 0.1$ of light speed in free space. A meta-material formed by an array of complementary split-ring resonators with controllable hopping strength enables the direct observation in transmission and reflection of non-trivial topology eigenstates, including a negative phase velocity regime. By rotating the texture orientation of the diatomic resonators, we can explore all the band structures and unveil the onset of the trivial and non-trivial protected eigenmodes at GHz frequencies, even in the presence of non-negligible loss. Our system realizes a fully tunable and controllable artificial optical system to study the interplay between topology and slow-light towards applications in quantum technologies.
The concept of topological phases has been generalized to higher-order topological insulators and superconductors with novel boundary states on corners or hinges. Meanwhile, recent experimental advances in controlling dissipation (such as gain and loss) open new possibilities in studying non-Hermitian topological phases. Here, we show that higher-order topological corner states can emerge by simply introducing staggered on-site gain/loss to a Hermitian system in trivial phases. For such a non-Hermitian system, we establish a general bulk-corner correspondence by developing a biorthogonal nested-Wilson-loop and edge-polarization theory, which can be applied to a wide class of non-Hermitian systems with higher-order topological orders. The theory gives rise to topological invariants characterizing the non-Hermitian topological multipole moments (i.e., corner states) that are protected by reflection or chiral symmetry. Such gain/loss induced higher-order topological corner states can be experimentally realized using photons in coupled cavities or cold atoms in optical lattices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا