Do you want to publish a course? Click here

Ensemble Kalman methods for high-dimensional hierarchical dynamic space-time models

136   0   0.0 ( 0 )
 Added by Matthias Katzfuss
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We propose a new class of filtering and smoothing methods for inference in high-dimensional, nonlinear, non-Gaussian, spatio-temporal state-space models. The main idea is to combine the ensemble Kalman filter and smoother, developed in the geophysics literature, with state-space algorithms from the statistics literature. Our algorithms address a variety of estimation scenarios, including on-line and off-line state and parameter estimation. We take a Bayesian perspective, for which the goal is to generate samples from the joint posterior distribution of states and parameters. The key benefit of our approach is the use of ensemble Kalman methods for dimension reduction, which allows inference for high-dimensional state vectors. We compare our methods to existing ones, including ensemble Kalman filters, particle filters, and particle MCMC. Using a real data example of cloud motion and data simulated under a number of nonlinear and non-Gaussian scenarios, we show that our approaches outperform these existing methods.



rate research

Read More

The Ensemble Kalman Filter (EnKF) has achieved great successes in data assimilation in atmospheric and oceanic sciences, but its failure in convergence to the right filtering distribution precludes its use for uncertainty quantification. We reformulate the EnKF under the framework of Langevin dynamics, which leads to a new particle filtering algorithm, the so-called Langevinized EnKF. The Langevinized EnKF inherits the forecast-analysis procedure from the EnKF and the use of mini-batch data from the stochastic gradient Langevin-type algorithms, which make it scalable with respect to both the dimension and sample size. We prove that the Langevinized EnKF converges to the right filtering distribution in Wasserstein distance under the big data scenario that the dynamic system consists of a large number of stages and has a large number of samples observed at each stage. We reformulate the Bayesian inverse problem as a dynamic state estimation problem based on the techniques of subsampling and Langevin diffusion process. We illustrate the performance of the Langevinized EnKF using a variety of examples, including the Lorenz-96 model, high-dimensional variable selection, Bayesian deep learning, and Long Short Term Memory (LSTM) network learning with dynamic data.
Ensemble Kalman methods constitute an increasingly important tool in both state and parameter estimation problems. Their popularity stems from the derivative-free nature of the methodology which may be readily applied when computer code is available for the underlying state-space dynamics (for state estimation) or for the parameter-to-observable map (for parameter estimation). There are many applications in which it is desirable to enforce prior information in the form of equality or inequality constraints on the state or parameter. This paper establishes a general framework for doing so, describing a widely applicable methodology, a theory which justifies the methodology, and a set of numerical experiments exemplifying it.
145 - Ivan Kasanicky , Jan Mandel , 2014
A new type of ensemble Kalman filter is developed, which is based on replacing the sample covariance in the analysis step by its diagonal in a spectral basis. It is proved that this technique improves the aproximation of the covariance when the covariance itself is diagonal in the spectral basis, as is the case, e.g., for a second-order stationary random field and the Fourier basis. The method is extended by wavelets to the case when the state variables are random fields, which are not spatially homogeneous. Efficient implementations by the fast Fourier transform (FFT) and discrete wavelet transform (DWT) are presented for several types of observations, including high-dimensional data given on a part of the domain, such as radar and satellite images. Computational experiments confirm that the method performs well on the Lorenz 96 problem and the shallow water equations with very small ensembles and over multiple analysis cycles.
State-space models provide an important body of techniques for analyzing time-series, but their use requires estimating unobserved states. The optimal estimate of the state is its conditional expectation given the observation histories, and computing this expectation is hard when there are nonlinearities. Existing filtering methods, including sequential Monte Carlo, tend to be either inaccurate or slow. In this paper, we study a nonlinear filter for nonlinear/non-Gaussian state-space models, which uses Laplaces method, an asymptotic series expansion, to approximate the states conditional mean and variance, together with a Gaussian conditional distribution. This {em Laplace-Gaussian filter} (LGF) gives fast, recursive, deterministic state estimates, with an error which is set by the stochastic characteristics of the model and is, we show, stable over time. We illustrate the estimation ability of the LGF by applying it to the problem of neural decoding and compare it to sequential Monte Carlo both in simulations and with real data. We find that the LGF can deliver superior results in a small fraction of the computing time.
Yang et al. (2016) proved that the symmetric random walk Metropolis--Hastings algorithm for Bayesian variable selection is rapidly mixing under mild high-dimensional assumptions. We propose a novel MCMC sampler using an informed proposal scheme, which we prove achieves a much faster mixing time that is independent of the number of covariates, under the same assumptions. To the best of our knowledge, this is the first high-dimensional result which rigorously shows that the mixing rate of informed MCMC methods can be fast enough to offset the computational cost of local posterior evaluation. Motivated by the theoretical analysis of our sampler, we further propose a new approach called two-stage drift condition to studying convergence rates of Markov chains on general state spaces, which can be useful for obtaining tight complexity bounds in high-dimensional settings. The practical advantages of our algorithm are illustrated by both simulation studies and real data analysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا