No Arabic abstract
Several approaches have recently been proposed for learning decentralized deep multiagent policies that coordinate via a differentiable communication channel. While these policies are effective for many tasks, interpretation of their induced communication strategies has remained a challenge. Here we propose to interpret agents messages by translating them. Unlike in typical machine translation problems, we have no parallel data to learn from. Instead we develop a translation model based on the insight that agent messages and natural language strings mean the same thing if they induce the same belief about the world in a listener. We present theoretical guarantees and empirical evidence that our approach preserves both the semantics and pragmatics of messages by ensuring that players communicating through a translation layer do not suffer a substantial loss in reward relative to players with a common language.
Users often query a search engine with a specific question in mind and often these queries are keywords or sub-sentential fragments. For example, if the users want to know the answer for Whats the capital of USA, they will most probably query capital of USA or USA capital or some keyword-based variation of this. For example, for the user entered query capital of USA, the most probable question intent is Whats the capital of USA?. In this paper, we are proposing a method to generate well-formed natural language question from a given keyword-based query, which has the same question intent as the query. Conversion of keyword-based web query into a well-formed question has lots of applications, with some of them being in search engines, Community Question Answering (CQA) website and bots communication. We found a synergy between query-to-question problem with standard machine translation(MT) task. We have used both Statistical MT (SMT) and Neural MT (NMT) models to generate the questions from the query. We have observed that MT models perform well in terms of both automatic and human evaluation.
In this paper we present a question answering system using a neural network to interpret questions learned from the DBpedia repository. We train a sequence-to-sequence neural network model with n-triples extracted from the DBpedia Infobox Properties. Since these properties do not represent the natural language, we further used question-answer dialogues from movie subtitles. Although the automatic evaluation shows a low overlap of the generated answers compared to the gold standard set, a manual inspection of the showed promising outcomes from the experiment for further work.
Decoding the direction of translating objects in front of cluttered moving backgrounds, accurately and efficiently, is still a challenging problem. In nature, lightweight and low-powered flying insects apply motion vision to detect a moving target in highly variable environments during flight, which are excellent paradigms to learn motion perception strategies. This paper investigates the fruit fly textit{Drosophila} motion vision pathways and presents computational modelling based on cutting-edge physiological researches. The proposed visual system model features bio-plausible ON and OFF pathways, wide-field horizontal-sensitive (HS) and vertical-sensitive (VS) systems. The main contributions of this research are on two aspects: 1) the proposed model articulates the forming of both direction-selective (DS) and direction-opponent (DO) responses, revealed as principal features of motion perception neural circuits, in a feed-forward manner; 2) it also shows robust direction selectivity to translating objects in front of cluttered moving backgrounds, via the modelling of spatiotemporal dynamics including combination of motion pre-filtering mechanisms and ensembles of local correlators inside both the ON and OFF pathways, which works effectively to suppress irrelevant background motion or distractors, and to improve the dynamic response. Accordingly, the direction of translating objects is decoded as global responses of both the HS and VS systems with positive or negative output indicating preferred-direction (PD) or null-direction (ND) translation. The experiments have verified the effectiveness of the proposed neural system model, and demonstrated its responsive preference to faster-moving, higher-contrast and larger-size targets embedded in cluttered moving backgrounds.
Many graph embedding approaches have been proposed for knowledge graph completion via link prediction. Among those, translating embedding approaches enjoy the advantages of light-weight structure, high efficiency and great interpretability. Especially when extended to complex vector space, they show the capability in handling various relation patterns including symmetry, antisymmetry, inversion and composition. However, previous translating embedding approaches defined in complex vector space suffer from two main issues: 1) representing and modeling capacities of the model are limited by the translation function with rigorous multiplication of two complex numbers; and 2) embedding ambiguity caused by one-to-many relations is not explicitly alleviated. In this paper, we propose a relation-adaptive translation function built upon a novel weighted product in complex space, where the weights are learnable, relation-specific and independent to embedding size. The translation function only requires eight more scalar parameters each relation, but improves expressive power and alleviates embedding ambiguity problem. Based on the function, we then present our Relation-adaptive translating Embedding (RatE) approach to score each graph triple. Moreover, a novel negative sampling method is proposed to utilize both prior knowledge and self-adversarial learning for effective optimization. Experiments verify RatE achieves state-of-the-art performance on four link prediction benchmarks.
Our work presented in this paper focuses on the translation of terminological expressions represented in semantically structured resources, like ontologies or knowledge graphs. The challenge of translating ontology labels or terminological expressions documented in knowledge bases lies in the highly specific vocabulary and the lack of contextual information, which can guide a machine translation system to translate ambiguous words into the targeted domain. Due to these challenges, we evaluate the translation quality of domain-specific expressions in the medical and financial domain with statistical as well as with neural machine translation methods and experiment domain adaptation of the translation models with terminological expressions only. Furthermore, we perform experiments on the injection of external terminological expressions into the translation systems. Through these experiments, we observed a significant advantage in domain adaptation for the domain-specific resource in the medical and financial domain and the benefit of subword models over word-based neural machine translation models for terminology translation.