Do you want to publish a course? Click here

Autonomous Calibration of Single Spin Qubit Operations

69   0   0.0 ( 0 )
 Added by Ressa Said
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fully autonomous precise control of qubits is crucial for quantum information processing, quantum communication, and quantum sensing applications. It requires minimal human intervention on the ability to model, to predict and to anticipate the quantum dynamics [1,2], as well as to precisely control and calibrate single qubit operations. Here, we demonstrate single qubit autonomous calibrations via closed-loop optimisations of electron spin quantum operations in diamond. The operations are examined by quantum state and process tomographic measurements at room temperature, and their performances against systematic errors are iteratively rectified by an optimal pulse engineering algorithm. We achieve an autonomous calibrated fidelity up to 1.00 on a time scale of minutes for a spin population inversion and up to 0.98 on a time scale of hours for a Hadamard gate within the experimental error of 2%. These results manifest a full potential for versatile quantum nanotechnologies.



rate research

Read More

699 - K. Toyoda , K. Uchida , A. Noguchi 2013
Universal single-qubit operations based on purely geometric phase factors in adiabatic processes are demonstrated by utilizing a four-level system in a trapped single $^{40}$Ca$^+$ ion connected by three oscillating fields. Robustness against parameter variations is studied. The scheme demonstrated here can be employed as a building block for large-scale holonomic quantum computations, which may be useful for large qubit systems with statistical variations in system parameters.
We investigate the coherence properties of individual nuclear spin quantum bits in diamond [Dutt et al., Science, 316, 1312 (2007)] when a proximal electronic spin associated with a nitrogen-vacancy (NV) center is being interrogated by optical radiation. The resulting nuclear spin dynamics are governed by time-dependent hyperfine interaction associated with rapid electronic transitions, which can be described by a spin-fluctuator model. We show that due to a process analogous to motional averaging in nuclear magnetic resonance, the nuclear spin coherence can be preserved after a large number of optical excitation cycles. Our theoretical analysis is in good agreement with experimental results. It indicates a novel approach that could potentially isolate the nuclear spin system completely from the electronic environment.
Engineering quantum operations is one of the main abilities we need for developing quantum technologies and designing new fundamental tests. Here we propose a scheme for realising a controlled operation acting on a travelling quantum field, whose functioning is determined by an input qubit. This study introduces new concepts and methods in the interface of continuous- and discrete-variable quantum optical systems.
We propose a surface ion trap design incorporating microwave control electrodes for near-field single-qubit control. The electrodes are arranged so as to provide arbitrary frequency, amplitude and polarization control of the microwave field in one trap zone, while a similar set of electrodes is used to null the residual microwave field in a neighbouring zone. The geometry is chosen to reduce the residual field to the 0.5% level without nulling fields; with nulling, the crosstalk may be kept close to the 0.01% level for realistic microwave amplitude and phase drift. Using standard photolithography and electroplating techniques, we have fabricated a proof-of-principle electrode array with two trapping zones. We discuss requirements for the microwave drive system and prospects for scalability to a large two-dimensional trap array.
Coherence and entanglement are the two most crucial resources for various quantum information processing tasks. Here, we study the interplay of coherence and entanglement under the action of different three qubit quantum cloning operations. Considering certain well-known quantum cloning machines (input state independent and dependent), we provide examples of coherent and incoherent operations performed by them. We show that both the output entanglement and coherence could vanish under incoherent cloning operations. Coherent cloning operations on the other hand, could be used to construct a universal and optimal coherence machine. It is also shown that under coherent cloning operations the output two qubit entanglement could be maximal even if the input coherence is negligible. Also it is possible to generate a fixed amount of entanglement independent of the nature of the input state.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا