No Arabic abstract
Coherence and entanglement are the two most crucial resources for various quantum information processing tasks. Here, we study the interplay of coherence and entanglement under the action of different three qubit quantum cloning operations. Considering certain well-known quantum cloning machines (input state independent and dependent), we provide examples of coherent and incoherent operations performed by them. We show that both the output entanglement and coherence could vanish under incoherent cloning operations. Coherent cloning operations on the other hand, could be used to construct a universal and optimal coherence machine. It is also shown that under coherent cloning operations the output two qubit entanglement could be maximal even if the input coherence is negligible. Also it is possible to generate a fixed amount of entanglement independent of the nature of the input state.
We compute analytically the maximal rates of distillation of quantum coherence under strictly incoherent operations (SIO) and physically incoherent operations (PIO), showing that they coincide for all states, and providing a complete description of the phenomenon of bound coherence. In particular, we establish a simple, analytically computable necessary and sufficient criterion for the asymptotic distillability under SIO and PIO. We use this result to show that almost every quantum state is undistillable --- only pure states as well as states whose density matrix contains a rank-one submatrix allow for coherence distillation under SIO or PIO, while every other quantum state exhibits bound coherence. This demonstrates fundamental operational limitations of SIO and PIO in the resource theory of quantum coherence. We show that the fidelity of distillation of a single bit of coherence under SIO can be efficiently computed as a semidefinite program, and investigate the generalization of this result to provide an understanding of asymptotically achievable distillation fidelity.
Quantum resource theory under different classes of quantum operations advances multiperspective understandings of inherent quantum-mechanical properties, such as quantum coherence and quantum entanglement. We establish hierarchies of different operations for manipulating coherence and entanglement in distributed settings, where at least one of the two spatially separated parties are restricted from generating coherence. In these settings, we introduce new classes of operations and also characterize those maximal, i.e., the resource-non-generating operations, progressing beyond existing studies on incohere
We show that the classification of bi-partite pure entangled states when local quantum operations are restricted yields a structure that is analogous in many respects to that of mixed-state entanglement. Specifically, we develop this analogy by restricting operations through local superselection rules, and show that such exotic phenomena as bound entanglement and activation arise using pure states in this setting. This analogy aids in resolving several conceptual puzzles in the study of entanglement under restricted operations. In particular, we demonstrate that several types of quantum optical states that possess confusing entanglement properties are analogous to bound entangled states. Also, the classification of pure-state entanglement under restricted operations can be much simpler than for mixed-state entanglement. For instance, in the case of local Abelian superselection rules all questions concerning distillability can be resolved.
Geometric quantum mechanics aims to express the physical properties of quantum systems in terms of geometrical features preferentially selected in the space of pure states. Geometric characterisations are given here for systems of one, two, and three spin-1/2 particles, drawing attention to the classification of quantum states into entanglement types.
Here we report on the production and tomography of genuinely entangled Greenberger-Horne-Zeilinger states with up to 10 qubits connecting to a bus resonator in a superconducting circuit, where the resonator-mediated qubit-qubit interactions are used to controllably entangle multiple qubits and to operate on different pairs of qubits in parallel. The resulting 10-qubit density matrix is unambiguously probed, with a fidelity of $0.668 pm 0.025$. Our results demonstrate the largest entanglement created so far in solid-state architectures, and pave the way to large-scale quantum computation.