No Arabic abstract
Let us define for a compact set $A subset mathbb{R}^n$ the sequence $$ A(k) = left{frac{a_1+cdots +a_k}{k}: a_1, ldots, a_kin Aright}=frac{1}{k}Big(underset{k {rm times}}{underbrace{A + cdots + A}}Big). $$ It was independently proved by Shapley, Folkman and Starr (1969) and by Emerson and Greenleaf (1969) that $A(k)$ approaches the convex hull of $A$ in the Hausdorff distance induced by the Euclidean norm as $k$ goes to $infty$. We explore in this survey how exactly $A(k)$ approaches the convex hull of $A$, and more generally, how a Minkowski sum of possibly different compact sets approaches convexity, as measured by various indices of non-convexity. The non-convexity indices considered include the Hausdorff distance induced by any norm on $mathbb{R}^n$, the volume deficit (the difference of volumes), a non-convexity index introduced by Schneider (1975), and the effective standard deviation or inner radius. After first clarifying the interrelationships between these various indices of non-convexity, which were previously either unknown or scattered in the literature, we show that the volume deficit of $A(k)$ does not monotonically decrease to 0 in dimension 12 or above, thus falsifying a conjecture of Bobkov et al. (2011), even though their conjecture is proved to be true in dimension 1 and for certain sets $A$ with special structure. On the other hand, Schneiders index possesses a strong monotonicity property along the sequence $A(k)$, and both the Hausdorff distance and effective standard deviation are eventually monotone (once $k$ exceeds $n$). Along the way, we obtain new inequalities for the volume of the Minkowski sum of compact sets, falsify a conjecture of Dyn and Farkhi (2004), demonstrate applications of our results to combinatorial discrepancy theory, and suggest some questions worthy of further investigation.
The lakes of Wada are three disjoint simply connected domains in $S^2$ with the counterintuitive property that they all have the same boundary. The common boundary is a indecomposable continuum. In this article we calculated the Minkowski dimension of such boundaries. The lakes constructed in the standard Cantor way has $ln(6)/ln(3)approx 1.6309$-dimensional boundary, while in general, for any number in $[1,2]$ we can construct lakes with such dimensional boundaries.
We clarify the relation between inverse systems, the Radon-Nikodym property, the Asymptotic Norming Property of James-Ho, and the GFDA spaces introduced in our earlier paper on differentiability of Lipschitz maps into Banach spaces.
We study the precise asymptotic volume of balls in Orlicz spaces and show that the volume of the intersection of two Orlicz balls undergoes a phase transition when the dimension of the ambient space tends to infinity. This generalizes a result of Schechtman and Schmuckenschlager [GAFA, Lecture notes in Math. 1469 (1991), 174--178] for $ell_p^d$-balls. As another application, we determine the precise asymptotic volume ratio for $2$-concave Orlicz spaces $ell_M^d$. Our method rests on ideas from statistical mechanics and large deviations theory, more precisely the maximum entropy or Gibbs principle for non-interacting particles, and presents a natural approach and fresh perspective to such geometric and volumetric questions. In particular, our approach explains how the $p$-generalized Gaussian distribution occurs in problems related to the geometry of $ell_p^d$-balls, which are Orlicz balls when the Orlicz function is $M(t) = |t|^p$.
Within the class of reflexive Banach spaces, we prove a metric characterization of the class of asymptotic-$c_0$ spaces in terms of a bi-Lipschitz invariant which involves metrics that generalize the Hamming metric on $k$-subsets of $mathbb{N}$. We apply this characterization to show that the class of separable, reflexive, and asymptotic-$c_0$ Banach spaces is non-Borel co-analytic. Finally, we introduce a relaxation of the asymptotic-$c_0$ property, called the asymptotic-subsequential-$c_0$ property, which is a partial obstruction to the equi-coarse embeddability of the sequence of Hamming graphs. We present examples of spaces that are asymptotic-subsequential-$c_0$. In particular $T^*(T^*)$ is asymptotic-subsequential-$c_0$ where $T^*$ is Tsirelsons original space.
In the recent paper [2], it was proved that the closure of the planar diffeomorphisms in the Sobolev norm consists of the functions which are non-crossing (NC), i.e., the functions which can be uniformly approximated by continuous one-to-one functions on the grids. A deep simplification of this property is to consider curves instead of grids, so considering functions which are non-crossing on lines (NCL). Since the NCL property is way easier to check, it would be extremely positive if they actually coincide, while it is only obvious that NC implies NCL. We show that in general NCL does not imply NC, but the implication becomes true with the additional assumption that $det(Du)>0$ a.e., which is a very common assumption in nonlinear elasticity.