Do you want to publish a course? Click here

Learning Certifiably Optimal Rule Lists for Categorical Data

163   0   0.0 ( 0 )
 Added by Elaine Angelino
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We present the design and implementation of a custom discrete optimization technique for building rule lists over a categorical feature space. Our algorithm produces rule lists with optimal training performance, according to the regularized empirical risk, with a certificate of optimality. By leveraging algorithmic bounds, efficient data structures, and computational reuse, we achieve several orders of magnitude speedup in time and a massive reduction of memory consumption. We demonstrate that our approach produces optimal rule lists on practical problems in seconds. Our results indicate that it is possible to construct optimal sparse rule lists that are approximately as accurate as the COMPAS proprietary risk prediction tool on data from Broward County, Florida, but that are completely interpretable. This framework is a novel alternative to CART and other decision tree methods for interpretable modeling.



rate research

Read More

In this paper, we consider linear prediction models in the form of a sparse linear combination of rules, where a rule is an indicator function defined over a hyperrectangle in the input space. Since the number of all possible rules generated from the training dataset becomes extremely large, it has been difficult to consider all of them when fitting a sparse model. In this paper, we propose Safe Optimal Rule Fit (SORF) as an approach to resolve this problem, which is formulated as a convex optimization problem with sparse regularization. The proposed SORF method utilizes the fact that the set of all possible rules can be represented as a tree. By extending a recently popularized convex optimization technique called safe screening, we develop a novel method for pruning the tree such that pruned nodes are guaranteed to be irrelevant to the prediction model. This approach allows us to efficiently learn a prediction model constructed from an exponentially large number of all possible rules. We demonstrate the usefulness of the proposed method by numerical experiments using several benchmark datasets.
We introduce an approach for training Variational Autoencoders (VAEs) that are certifiably robust to adversarial attack. Specifically, we first derive actionable bounds on the minimal size of an input perturbation required to change a VAEs reconstruction by more than an allowed amount, with these bounds depending on certain key parameters such as the Lipschitz constants of the encoder and decoder. We then show how these parameters can be controlled, thereby providing a mechanism to ensure a priori that a VAE will attain a desired level of robustness. Moreover, we extend this to a complete practical approach for training such VAEs to ensure our criteria are met. Critically, our method allows one to specify a desired level of robustness upfront and then train a VAE that is guaranteed to achieve this robustness. We further demonstrate that these Lipschitz--constrained VAEs are more robust to attack than standard VAEs in practice.
Topological data analysis is a relatively new branch of machine learning that excels in studying high dimensional data, and is theoretically known to be robust against noise. Meanwhile, data objects with mixed numeric and categorical attributes are ubiquitous in real-world applications. However, topological methods are usually applied to point cloud data, and to the best of our knowledge there is no available framework for the classification of mixed data using topological methods. In this paper, we propose a novel topological machine learning method for mixed data classification. In the proposed method, we use theory from topological data analysis such as persistent homology, persistence diagrams and Wasserstein distance to study mixed data. The performance of the proposed method is demonstrated by experiments on a real-world heart disease dataset. Experimental results show that our topological method outperforms several state-of-the-art algorithms in the prediction of heart disease.
In this paper we present a method for learning a discriminative classifier from unlabeled or partially labeled data. Our approach is based on an objective function that trades-off mutual information between observed examples and their predicted categorical class distribution, against robustness of the classifier to an adversarial generative model. The resulting algorithm can either be interpreted as a natural generalization of the generative adversarial networks (GAN) framework or as an extension of the regularized information maximization (RIM) framework to robust classification against an optimal adversary. We empirically evaluate our method - which we dub categorical generative adversarial networks (or CatGAN) - on synthetic data as well as on challenging image classification tasks, demonstrating the robustness of the learned classifiers. We further qualitatively assess the fidelity of samples generated by the adversarial generator that is learned alongside the discriminative classifier, and identify links between the CatGAN objective and discriminative clustering algorithms (such as RIM).
Optimal transport is a machine learning problem with applications including distribution comparison, feature selection, and generative adversarial networks. In this paper, we propose feature-robust optimal transport (FROT) for high-dimensional data, which solves high-dimensional OT problems using feature selection to avoid the curse of dimensionality. Specifically, we find a transport plan with discriminative features. To this end, we formulate the FROT problem as a min--max optimization problem. We then propose a convex formulation of the FROT problem and solve it using a Frank--Wolfe-based optimization algorithm, whereby the subproblem can be efficiently solved using the Sinkhorn algorithm. Since FROT finds the transport plan from selected features, it is robust to noise features. To show the effectiveness of FROT, we propose using the FROT algorithm for the layer selection problem in deep neural networks for semantic correspondence. By conducting synthetic and benchmark experiments, we demonstrate that the proposed method can find a strong correspondence by determining important layers. We show that the FROT algorithm achieves state-of-the-art performance in real-world semantic correspondence datasets.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا