Do you want to publish a course? Click here

Emission Noise and High Frequency Cut-Off of the Kondo Effect in a Quantum Dot

91   0   0.0 ( 0 )
 Added by Richard Deblock
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

By coupling on chip a carbon nanotube to a quantum noise detector, a superconductor-insulator-superconductor junction, via a resonant circuit, we measure the emission noise of a carbon nanotube quantum dot in the Kondo regime. The signature of the Kondo effect in the current noise is measured for different ratios of the Kondo temperature over the measured frequency and for different asymmetries of the coupling to the contacts, and compared to finite frequency quantum noise calculations. Our results point towards the existence of a high frequency cut-off of the electronic emission noise associated with the Kondo resonance. This cut-off frequency is of the order of a few times the Kondo temperature when the electronic system is close to equilibrium, which is the case for a strongly asymmetric coupling. On the other hand, this cut-off is shifted to lower frequency in a symmetric coupling situation, where the bias voltage drives the Kondo state out-of-equilibrium. We then attribute the low frequency cut-off to voltage induced spin relaxation.



rate research

Read More

The current emission noise of a carbon nanotube quantum dot in the Kondo regime is measured at frequencies $ u$ of the order or higher than the frequency associated with the Kondo effect $k_B T_K/h$, with $T_K$ the Kondo temperature. The carbon nanotube is coupled via an on-chip resonant circuit to a quantum noise detector, a superconductor-insulator-superconductor junction. We find for $h u approx k_B T_K$ a Kondo effect related singularity at a voltage bias $eV approx h u $, and a strong reduction of this singularity for $h u approx 3 k_B T_K$, in good agreement with theory. Our experiment constitutes a new original tool for the investigation of the non-equilibrium dynamics of many-body phenomena in nanoscale devices.
The Kondo effect is a key many-body phenomenon in condensed matter physics. It concerns the interaction between a localised spin and free electrons. Discovered in metals containing small amounts of magnetic impurities, it is now a fundamental mechanism in a wide class of correlated electron systems. Control over single, localised spins has become relevant also in fabricated structures due to the rapid developments in nano-electronics. Experiments have already demonstrated artificial realisations of isolated magnetic impurities at metallic surfaces, nanometer-scale magnets, controlled transitions between two-electron singlet and triplet states, and a tunable Kondo effect in semiconductor quantum dots. Here, we report an unexpected Kondo effect realised in a few-electron quantum dot containing singlet and triplet spin states whose energy difference can be tuned with a magnetic field. This effect occurs for an even number of electrons at the degeneracy between singlet and triplet states. The characteristic energy scale is found to be much larger than for the ordinary spin-1/2 case.
We present a detailed study for the finite-frequency current noise of a Kondo quantum dot in presence of a magnetic field by using a recently developed real time functional renormalization group approach [Phys. Rev. B $mathbf{83}$, 201303(R) (2011)]. The scaling equations are modified in an external magnetic field; the couplings and non-local current vertices become strongly anisotropic, and develop new singularities. Consequently, in addition to the natural emission threshold frequency, $hbaromega = |eV|$, a corresponding singular behavior is found to emerge in the noise spectrum at frequencies $hbar omega approx |eVpm B|$. The predicted singularities are measurable with present-day experimental techniques.
We report the observation of Kondo physics in a spin- 3/2 hole quantum dot. The dot is formed close to pinch-off in a hole quantum wire defined in an undoped AlGaAs/GaAs heterostructure. We clearly observe two distinctive hallmarks of quantum dot Kondo physics. First, the Zeeman spin-splitting of the zero-bias peak in the differential conductance is independent of gate voltage. Second, this splitting is twice as large as the splitting for the lowest one-dimensional subband. We show that the Zeeman splitting of the zero-bias peak is highly-anisotropic, and attribute this to the strong spin-orbit interaction for holes in GaAs.
We report measurements of the Kondo effect in a double quantum dot (DQD), where the orbital states act as pseudospin states whose degeneracy contributes to Kondo screening. Standard transport spectroscopy as a function of the bias voltage on both dots shows a zero-bias peak in conductance, analogous to that observed for spin Kondo in single dots. Breaking the orbital degeneracy splits the Kondo resonance in the tunneling density of states above and below the Fermi energy of the leads, with the resonances having different pseudospin character. Using pseudospin-resolved spectroscopy, we demonstrate the pseudospin character by observing a Kondo peak at only one sign of the bias voltage. We show that even when the pseudospin states have very different tunnel rates to the leads, a Kondo temperature can be consistently defined for the DQD system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا