Do you want to publish a course? Click here

Particle Filtering for PLCA model with Application to Music Transcription

71   0   0.0 ( 0 )
 Added by Dorian Cazau
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Automatic Music Transcription (AMT) consists in automatically estimating the notes in an audio recording, through three attributes: onset time, duration and pitch. Probabilistic Latent Component Analysis (PLCA) has become very popular for this task. PLCA is a spectrogram factorization method, able to model a magnitude spectrogram as a linear combination of spectral vectors from a dictionary. Such methods use the Expectation-Maximization (EM) algorithm to estimate the parameters of the acoustic model. This algorithm presents well-known inherent defaults (local convergence, initialization dependency), making EM-based systems limited in their applications to AMT, particularly in regards to the mathematical form and number of priors. To overcome such limits, we propose in this paper to employ a different estimation framework based on Particle Filtering (PF), which consists in sampling the posterior distribution over larger parameter ranges. This framework proves to be more robust in parameter estimation, more flexible and unifying in the integration of prior knowledge in the system. Note-level transcription accuracies of 61.8 $%$ and 59.5 $%$ were achieved on evaluation sound datasets of two different instrument repertoires, including the classical piano (from MAPS dataset) and the marovany zither, and direct comparisons to previous PLCA-based approaches are provided. Steps for further development are also outlined.



rate research

Read More

In this paper, we introduce Foley Music, a system that can synthesize plausible music for a silent video clip about people playing musical instruments. We first identify two key intermediate representations for a successful video to music generator: body keypoints from videos and MIDI events from audio recordings. We then formulate music generation from videos as a motion-to-MIDI translation problem. We present a Graph$-$Transformer framework that can accurately predict MIDI event sequences in accordance with the body movements. The MIDI event can then be converted to realistic music using an off-the-shelf music synthesizer tool. We demonstrate the effectiveness of our models on videos containing a variety of music performances. Experimental results show that our model outperforms several existing systems in generating music that is pleasant to listen to. More importantly, the MIDI representations are fully interpretable and transparent, thus enabling us to perform music editing flexibly. We encourage the readers to watch the demo video with audio turned on to experience the results.
Most of the state-of-the-art automatic music transcription (AMT) models break down the main transcription task into sub-tasks such as onset prediction and offset prediction and train them with onset and offset labels. These predictions are then concatenated together and used as the input to train another model with the pitch labels to obtain the final transcription. We attempt to use only the pitch labels (together with spectrogram reconstruction loss) and explore how far this model can go without introducing supervised sub-tasks. In this paper, we do not aim at achieving state-of-the-art transcription accuracy, instead, we explore the effect that spectrogram reconstruction has on our AMT model. Our proposed model consists of two U-nets: the first U-net transcribes the spectrogram into a posteriorgram, and a second U-net transforms the posteriorgram back into a spectrogram. A reconstruction loss is applied between the original spectrogram and the reconstructed spectrogram to constrain the second U-net to focus only on reconstruction. We train our model on three different datasets: MAPS, MAESTRO, and MusicNet. Our experiments show that adding the reconstruction loss can generally improve the note-level transcription accuracy when compared to the same model without the reconstruction part. Moreover, it can also boost the frame-level precision to be higher than the state-of-the-art models. The feature maps learned by our U-net contain gridlike structures (not present in the baseline model) which implies that with the presence of the reconstruction loss, the model is probably trying to count along both the time and frequency axis, resulting in a higher note-level transcription accuracy.
Metric elicitation is a recent framework for eliciting performance metrics that best reflect implicit user preferences. This framework enables a practitioner to adjust the performance metrics based on the application, context, and population at hand. However, available elicitation strategies have been limited to linear (or fractional-linear) functions of predictive rates. In this paper, we develop an approach to elicit from a wider range of complex multiclass metrics defined by quadratic functions of rates by exploiting their local linear structure. We apply this strategy to elicit quadratic metrics for group-based fairness, and also discuss how it can be generalized to higher-order polynomials. Our elicitation strategies require only relative preference feedback and are robust to both feedback and finite sample noise.
Bayesian models have become very popular over the last years in several fields such as signal processing, statistics, and machine learning. Bayesian inference requires the approximation of complicated integrals involving posterior distributions. For this purpose, Monte Carlo (MC) methods, such as Markov Chain Monte Carlo and importance sampling algorithms, are often employed. In this work, we introduce the theory and practice of a Compressed MC (C-MC) scheme to compress the statistical information contained in a set of random samples. In its basic version, C-MC is strictly related to the stratification technique, a well-known method used for variance reduction purposes. Deterministic C-MC schemes are also presented, which provide very good performance. The compression problem is strictly related to the moment matching approach applied in different filtering techniques, usually called as Gaussian quadrature rules or sigma-point methods. C-MC can be employed in a distributed Bayesian inference framework when cheap and fast communications with a central processor are required. Furthermore, C-MC is useful within particle filtering and adaptive IS algorithms, as shown by three novel schemes introduced in this work. Six numerical results confirm the benefits of the introduced schemes, outperforming the corresponding benchmark methods. A related code is also provided.
Computational multiscale methods for analyzing and deriving constitutive responses have been used as a tool in engineering problems because of their ability to combine information at different length scales. However, their application in a nonlinear framework can be limited by high computational costs, numerical difficulties, and/or inaccuracies. In this paper, a hybrid methodology is presented which combines classical constitutive laws (model-based), a data-driven correction component, and computational multiscale approaches. A model-based material representation is locally improved with data from lower scales obtained by means of a nonlinear numerical homogenization procedure leading to a model-data-driven approach. Therefore, macroscale simulations explicitly incorporate the true microscale response, maintaining the same level of accuracy that would be obtained with online micro-macro simulations but with a computational cost comparable to classical model-driven approaches. In the proposed approach, both model and data play a fundamental role allowing for the synergistic integration between a physics-based response and a machine learning black-box. Numerical applications are implemented in two dimensions for different tests investigating both material and structural responses in large deformation.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا