No Arabic abstract
It is well recognized that looking for new physics at lower energy colliders is a tendency which is complementary to high energy machines such as LHC. Based on large database of BESIII, we may have a unique opportunity to do a good job. In this paper we calculate the branching ratios of semi-leptonic processes $D^+_s to K^+ e^-e^+$, $D^+_s to K^+ e^-mu^+$ and leptonic processes $D^0 to e^-e^+$, $D^0 to e^-mu^+$ in the frames of $U(1)$ model, 2HDM and unparticle separately. It is found that both the $U(1)$ and 2HDM may influence the semi-leptonic decay rates, but only the $U(1)$ offers substantial contributions to the pure leptonic decays and the resultant branching ratio of $D^0 to e^-mu^+$ can be as large as $10^{-7}sim10^{-8}$ which might be observed at the future super $tau$-charm factory.
The recent experimental developments require a more precise theoretical study of weak decays of heavy baryon $Lambda_b^0$. In this work, we provide an updated and systematic analysis of both the semi-leptonic and nonleptonic decays of $Lambda^0_b$ into baryons $Lambda^+_c$, $Lambda$, $p$, and $n$. The diquark approximation is adopted so that the methods developed in the $B$ meson system can be extended into the baryon system. The baryon-to-baryon transition form factors are calculated in the framework of a covariant light-front quark model. The form factors $f_3, ~g_3$ can be extracted and are found to be non-negligible. The semi-leptonic processes of $Lambda^0_bto Lambda^+_c(p)l^-bar u_l$ are calculated and the results are consistent with the experiment. We study the non-leptonic processes within the QCD factorization approach. The decay amplitudes are calculated at the next-to-leading order in strong coupling constant $alpha_s$. We calculate the non-leptonic decays of $Lambda^0_b$ into a baryon and a s-wave meson (pseudoscalar or vector) including 44 processes in total. The branching ratios and direct CP asymmetries are predicted. The numerical results are compared to the experimental data and those in the other theoretical approaches. Our results show validity of the diquark approximation and application of QCD factorization approach into the heavy baryon system.
New Physics can show up in various well-known processes already studied in the Standard Model, in particular by modifying decay rates to some extent. In this work, I examine leptonic decays of $Upsilon$ vector resonances of bottomonium below $Bbar{B}$ production, subsequent to a magnetic dipole radiative structural transition of the vector resonance yielding a pseudoscalar continuum state, searching for the existence of a light Higgs-like neutral boson that would imply a slight but experimentally measurable breaking of lepton universality.
The measured rate for D_s -> l nu decays, where l is a muon or tau, is larger than the standard model prediction, which relies on lattice QCD, at the 3.8 sigma level. We discuss how robust the theoretical prediction is, and we show that the discrepancy with experiment may be explained by a charged Higgs boson or a leptoquark.
We present a comprehensive update of the bounds on R-Parity violating supersymmetric couplings from lepton-flavour- and lepton-number-violating decay processes. We consider tau and mu decays as well as leptonic and semi-leptonic decays of mesons. We present several new bounds resulting from tau, eta and Kaon decays and correct some results in the literature concerning B-meson decays.
We give a short and basic introduction to our covariant Dyson-Schwinger-Bethe-Salpeter-equation approach using a rainbow-ladder truncated model of QCD, in which we investigate the leptonic decay properties of heavy quarkonium states in the pseudoscalar and vector channels. Comparing the magnitudes of decay constants, we identify radial 1-- excitations in our calculation with experimental excitations of J/Psi and Upsilon. Particular attention is paid to those states regarded as D-wave states in the quark model. We predict e+e- decay width of the Upsilon(1^3D_1) and Upsilon(2^3D_1) states of the order of ca. 15 eV or more. We also provide a set of predictions for decay constants of pseudoscalar radial excitations in heavy quarkonia.