Do you want to publish a course? Click here

Constraining Reionization with the $z sim 5-6$ Lyman-$alpha$ Forest Power Spectrum: the Outlook after Planck

212   0   0.0 ( 0 )
 Added by Jose O\\~norbe
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The latest measurements of CMB electron scattering optical depth reported by Planck significantly reduces the allowed space of HI reionization models, pointing toward a later ending and/or less extended phase transition than previously believed. Reionization impulsively heats the intergalactic medium (IGM) to $sim10^4$ K, and owing to long cooling and dynamical times in the diffuse gas, comparable to the Hubble time, memory of reionization heating is retained. Therefore, a late ending reionization has significant implications for the structure of the $zsim5-6$ Lyman-$alpha$ (ly$alpha$) forest. Using state-of-the-art hydrodynamical simulations that allow us to vary the timing of reionization and its associated heat injection, we argue that extant thermal signatures from reionization can be detected via the Ly$alpha$ forest power spectrum at $5< z<6$. This arises because the small-scale cutoff in the power depends not only the the IGM temperature at these epochs, but is also particularly sensitive to the pressure smoothing scale set by the IGM full thermal history. Comparing our different reionization models with existing measurements of the Ly$alpha$ forest flux power spectrum at $z=5.0-5.4$, we find that models satisfying Plancks $tau_e$, constraint favor a moderate amount of heat injection consistent with galaxies driving reionization, but disfavoring quasar-driven scenarios. We explore the impact of different reionization histories and heating models on the shape of the power spectrum, and find that they can produce similar effects, but argue that this degeneracy can be broken with high enough quality data. We study the feasibility of measuring the flux power spectrum at $zsimeq 6$ using mock quasar spectra and conclude that a sample of $sim10$ high-resolution spectra with an attainable signal-to-noise ratio will allow distinguishing between different reionization scenarios.



rate research

Read More

Our understanding of the intergalactic medium at redshifts $z=5$-$6$ has improved considerably in the last few years due to the discovery of quasars with $z>6$ that enable Lyman-$alpha$ forest studies at these redshifts. A realisation from this has been that hydrogen reionization could end much later than previously thought, so that large islands of cold, neutral hydrogen could exist in the IGM at redshifts $z=5$-$6$. By using radiative transfer simulations of the IGM, we consider the implications of the presence of these neutral hydrogen islands for the 21-cm power spectrum signal and its potential detection by experiments such as HERA, SKA, LOFAR, and MWA. In contrast with previous models of the 21-cm signal, we find that thanks to the late end of reionization the 21-cm power in our simulation continues to be as high as $Delta^2_{21}=10~mathrm{mK}^2$ at $ksim 0.1~h/$cMpc at $z=5$-$6$. This value of the power spectrum is several orders of magnitude higher than that in the conventional models considered in the literature for these redshifts. Such high values of the 21-cm power spectrum should be detectable by HERA and SKA1-LOW in $sim 1000$ hours, assuming optimistic foreground subtraction. This redshift range is also attractive due to relatively low sky temperature and potentially greater abundance of multiwavelength data.
We present a new investigation of the intergalactic medium (IGM) near the end of reionization using dark gaps in the Lyman-alpha (Ly$alpha$) forest. Using spectra of 55 QSOs at $z_{rm em}>5.5$, including new data from the XQR-30 VLT Large Programme, we identify gaps in the Ly$alpha$ forest where the transmission averaged over 1 comoving $h^{-1},{rm Mpc}$ bins falls below 5%. Nine ultra-long ($L > 80~h^{-1},{rm Mpc}$) dark gaps are identified at $z<6$. In addition, we quantify the fraction of QSO spectra exhibiting gaps longer than $30~h^{-1},{rm Mpc}$, $F_{30}$, as a function of redshift. We measure $F_{30} simeq 0.9$, 0.6, and 0.15 at $z = 6.0$, 5.8, and 5.6, respectively, with the last of these long dark gaps persisting down to $z simeq 5.3$. Comparing our results with predictions from hydrodynamical simulations, we find that the data are consistent with models wherein reionization extends significantly below redshift six. Models wherein the IGM is essentially fully reionized that retain large-scale fluctuations in the ionizing UV background at $z lesssim 6$ are also potentially consistent with the data. Overall, our results suggest that signature of reionization in the form of islands of neutral hydrogen and/or large-scale fluctuations in the ionizing background remain present in the IGM until at least $z simeq 5.3$.
We present an analysis of the evolution of the Lyman-series forest into the epoch of reionization using cosmological radiative transfer simulations in a scenario where reionization ends late. We explore models with different midpoints of reionization and gas temperatures. We find that once the simulations have been calibrated to match the mean flux of the observed Lyman-$alpha$ forest at $4 < z < 6$, they also naturally reproduce the distribution of effective optical depths of the Lyman-$beta$ forest in this redshift range. We note that the tail of the largest optical depths that is most challenging to match corresponds to the long absorption trough of ULAS J0148+0600, which we have previously shown to be rare in our simulations. We consider the evolution of the Lyman-series forest out to higher redshifts, and show that future observations of the Lyman-$beta$ forest at $z>6$ will discriminate between different reionization histories. The evolution of the Lyman-$alpha$ and Lyman-$gamma$ forests are less promising as a tool for pushing studies of reionization to higher redshifts due to the stronger saturation and foreground contamination, respectively.
We present constraints on neutrino masses, the primordial fluctuation spectrum from inflation, and other parameters of the $Lambda$CDM model, using the one-dimensional Ly$alpha$-forest power spectrum measured by Palanque-Delabrouille et al. (2013) from SDSS-III/BOSS, complemented by Planck 2015 cosmic microwave background (CMB) data and other cosmological probes. This paper improves on the previous analysis by Palanque-Delabrouille et al. (2015) by using a more powerful set of calibrating hydrodynamical simulations that reduces uncertainties associated with resolution and box size, by adopting a more flexible set of nuisance parameters for describing the evolution of the intergalactic medium, by including additional freedom to account for systematic uncertainties, and by using Planck 2015 constraints in place of Planck 2013. Fitting Ly$alpha$ data alone leads to cosmological parameters in excellent agreement with the values derived independently from CMB data, except for a weak tension on the scalar index $n_s$. Combining BOSS Ly$alpha$ with Planck CMB constrains the sum of neutrino masses to $sum m_ u < 0.12$ eV (95% C.L.) including all identified systematic uncertainties, tighter than our previous limit (0.15 eV) and more robust. Adding Ly$alpha$ data to CMB data reduces the uncertainties on the optical depth to reionization $tau$, through the correlation of $tau$ with $sigma_8$. Similarly, correlations between cosmological parameters help in constraining the tensor-to-scalar ratio of primordial fluctuations $r$. The tension on $n_s$ can be accommodated by allowing for a running ${mathrm d}n_s/{mathrm d}ln k$. Allowing running as a free parameter in the fits does not change the limit on $sum m_ u$. We discuss possible interpretations of these results in the context of slow-roll inflation.
We present the Lyman-$alpha$ flux power spectrum measurements of the XQ-100 sample of quasar spectra obtained in the context of the European Southern Observatory Large Programme Quasars and their absorption lines: a legacy survey of the high redshift universe with VLT/XSHOOTER. Using $100$ quasar spectra with medium resolution and signal-to-noise ratio we measure the power spectrum over a range of redshifts $z = 3 - 4.2$ and over a range of scales $k = 0.003 - 0.06,mathrm{s,km^{-1}}$. The results agree well with the measurements of the one-dimensional power spectrum found in the literature. The data analysis used in this paper is based on the Fourier transform and has been tested on synthetic data. Systematic and statistical uncertainties of our measurements are estimated, with a total error (statistical and systematic) comparable to the one of the BOSS data in the overlapping range of scales, and smaller by more than $50%$ for higher redshift bins ($z>3.6$) and small scales ($k > 0.01,mathrm{s,km^{-1}}$). The XQ-100 data set has the unique feature of having signal-to-noise ratios and resolution intermediate between the two data sets that are typically used to perform cosmological studies, i.e. BOSS and high-resolution spectra (e.g. UVES/VLT or HIRES). More importantly, the measured flux power spectra span the high redshift regime which is usually more constraining for structure formation models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا