No Arabic abstract
Our understanding of the intergalactic medium at redshifts $z=5$-$6$ has improved considerably in the last few years due to the discovery of quasars with $z>6$ that enable Lyman-$alpha$ forest studies at these redshifts. A realisation from this has been that hydrogen reionization could end much later than previously thought, so that large islands of cold, neutral hydrogen could exist in the IGM at redshifts $z=5$-$6$. By using radiative transfer simulations of the IGM, we consider the implications of the presence of these neutral hydrogen islands for the 21-cm power spectrum signal and its potential detection by experiments such as HERA, SKA, LOFAR, and MWA. In contrast with previous models of the 21-cm signal, we find that thanks to the late end of reionization the 21-cm power in our simulation continues to be as high as $Delta^2_{21}=10~mathrm{mK}^2$ at $ksim 0.1~h/$cMpc at $z=5$-$6$. This value of the power spectrum is several orders of magnitude higher than that in the conventional models considered in the literature for these redshifts. Such high values of the 21-cm power spectrum should be detectable by HERA and SKA1-LOW in $sim 1000$ hours, assuming optimistic foreground subtraction. This redshift range is also attractive due to relatively low sky temperature and potentially greater abundance of multiwavelength data.
The latest measurements of CMB electron scattering optical depth reported by Planck significantly reduces the allowed space of HI reionization models, pointing toward a later ending and/or less extended phase transition than previously believed. Reionization impulsively heats the intergalactic medium (IGM) to $sim10^4$ K, and owing to long cooling and dynamical times in the diffuse gas, comparable to the Hubble time, memory of reionization heating is retained. Therefore, a late ending reionization has significant implications for the structure of the $zsim5-6$ Lyman-$alpha$ (ly$alpha$) forest. Using state-of-the-art hydrodynamical simulations that allow us to vary the timing of reionization and its associated heat injection, we argue that extant thermal signatures from reionization can be detected via the Ly$alpha$ forest power spectrum at $5< z<6$. This arises because the small-scale cutoff in the power depends not only the the IGM temperature at these epochs, but is also particularly sensitive to the pressure smoothing scale set by the IGM full thermal history. Comparing our different reionization models with existing measurements of the Ly$alpha$ forest flux power spectrum at $z=5.0-5.4$, we find that models satisfying Plancks $tau_e$, constraint favor a moderate amount of heat injection consistent with galaxies driving reionization, but disfavoring quasar-driven scenarios. We explore the impact of different reionization histories and heating models on the shape of the power spectrum, and find that they can produce similar effects, but argue that this degeneracy can be broken with high enough quality data. We study the feasibility of measuring the flux power spectrum at $zsimeq 6$ using mock quasar spectra and conclude that a sample of $sim10$ high-resolution spectra with an attainable signal-to-noise ratio will allow distinguishing between different reionization scenarios.
21 cm Epoch of Reionization observations promise to transform our understanding of galaxy formation, but these observations are impossible without unprecedented levels of instrument calibration. We present end-to-end simulations of a full EoR power spectrum analysis including all of the major components of a real data processing pipeline: models of astrophysical foregrounds and EoR signal, frequency-dependent instrument effects, sky-based antenna calibration, and the full PS analysis. This study reveals that traditional sky-based per-frequency antenna calibration can only be implemented in EoR measurement analyses if the calibration model is unrealistically accurate. For reasonable levels of catalog completeness, the calibration introduces contamination in otherwise foreground-free power spectrum modes, precluding a PS measurement. We explore the origin of this contamination and potential mitigation techniques. We show that there is a strong joint constraint on the precision of the calibration catalog and the inherent spectral smoothness of antennae, and that this has significant implications for the instrumental design of the SKA and other future EoR observatories.
Hemispherical power asymmetry has emerged as a new challenge to cosmology in early universe. While the cosmic microwave background (CMB) measurements indicated the asymmetry amplitude $A simeq 0.07$ at the CMB scale $k_{rm CMB}simeq 0.0045,{rm Mpc}^{-1}$, the high-redshift quasar observations found no significant deviation from statistical isotropy. This conflict can be reconciled in some scale-dependent asymmetry models. We put forward a new parameterization of scale-dependent asymmetric power spectrum, inspired by a multi-speed inflation model. The 21-cm power spectrum from the epoch of reionization can be used to constrain the scale-dependent hemispherical asymmetry. We demonstrate that an optimum, multi-frequency observation by the Square Kilometre Array (SKA) Phase 2 can impose a constraint on the amplitude of the power asymmetry anomaly at the level of $Delta A simeq 0.2$ at $0.056 lesssim k_{rm 21cm} lesssim 0.15 ,{rm Mpc}^{-1}$. This limit may be further improved by an order of magnitude as $Delta A simeq 0.01$ with a cosmic variance limited experiment such as the Omniscope.
The non-Gaussian nature of the epoch of reionization (EoR) 21-cm signal has a significant impact on the error variance of its power spectrum $P({bf textit{k}})$. We have used a large ensemble of semi-numerical simulations and an analytical model to estimate the effect of this non-Gaussianity on the entire error-covariance matrix ${mathcal{C}}_{ij}$. Our analytical model shows that ${mathcal{C}}_{ij}$ has contributions from two sources. One is the usual variance for a Gaussian random field which scales inversely of the number of modes that goes into the estimation of $P({bf textit{k}})$. The other is the trispectrum of the signal. Using the simulated 21-cm signal ensemble, an ensemble of the randomized signal and ensembles of Gaussian random ensembles we have quantified the effect of the trispectrum on the error variance ${mathcal{C}}_{ij}$. We find that its relative contribution is comparable to or larger than that of the Gaussian term for the $k$ range $0.3 leq k leq 1.0 ,{rm Mpc}^{-1}$, and can be even $sim 200$ times larger at $k sim 5, {rm Mpc}^{-1}$. We also establish that the off-diagonal terms of ${mathcal{C}}_{ij}$ have statistically significant non-zero values which arise purely from the trispectrum. This further signifies that the error in different $k$ modes are not independent. We find a strong correlation between the errors at large $k$ values ($ge 0.5 ,{rm Mpc}^{-1}$), and a weak correlation between the smallest and largest $k$ values. There is also a small anti-correlation between the errors in the smallest and intermediate $k$ values. These results are relevant for the $k$ range that will be probed by the current and upcoming EoR 21-cm experiments.
We present the first limits on the Epoch of Reionization (EoR) 21-cm HI power spectra, in the redshift range $z=7.9-10.6$, using the Low-Frequency Array (LOFAR) High-Band Antenna (HBA). In total 13,h of data were used from observations centred on the North Celestial Pole (NCP). After subtraction of the sky model and the noise bias, we detect a non-zero $Delta^2_{rm I} = (56 pm 13 {rm mK})^2$ (1-$sigma$) excess variance and a best 2-$sigma$ upper limit of $Delta^2_{rm 21} < (79.6 {rm mK})^2$ at $k=0.053$$h$cMpc$^{-1}$ in the range $z=$9.6-10.6. The excess variance decreases when optimizing the smoothness of the direction- and frequency-dependent gain calibration, and with increasing the completeness of the sky model. It is likely caused by (i) residual side-lobe noise on calibration baselines, (ii) leverage due to non-linear effects, (iii) noise and ionosphere-induced gain errors, or a combination thereof. Further analyses of the excess variance will be discussed in forthcoming publications.