No Arabic abstract
Word embeddings are a powerful approach for unsupervised analysis of language. Recently, Rudolph et al. (2016) developed exponential family embeddings, which cast word embeddings in a probabilistic framework. Here, we develop dynamic embeddings, building on exponential family embeddings to capture how the meanings of words change over time. We use dynamic embeddings to analyze three large collections of historical texts: the U.S. Senate speeches from 1858 to 2009, the history of computer science ACM abstracts from 1951 to 2014, and machine learning papers on the Arxiv from 2007 to 2015. We find dynamic embeddings provide better fits than classical embeddings and capture interesting patterns about how language changes.
We present a probabilistic language model for time-stamped text data which tracks the semantic evolution of individual words over time. The model represents words and contexts by latent trajectories in an embedding space. At each moment in time, the embedding vectors are inferred from a probabilistic version of word2vec [Mikolov et al., 2013]. These embedding vectors are connected in time through a latent diffusion process. We describe two scalable variational inference algorithms--skip-gram smoothing and skip-gram filtering--that allow us to train the model jointly over all times; thus learning on all data while simultaneously allowing word and context vectors to drift. Experimental results on three different corpora demonstrate that our dynamic model infers word embedding trajectories that are more interpretable and lead to higher predictive likelihoods than competing methods that are based on static models trained separately on time slices.
Word embeddings are commonly obtained as optimizers of a criterion function $f$ of a text corpus, but assessed on word-task performance using a different evaluation function $g$ of the test data. We contend that a possible source of disparity in performance on tasks is the incompatibility between classes of transformations that leave $f$ and $g$ invariant. In particular, word embeddings defined by $f$ are not unique; they are defined only up to a class of transformations to which $f$ is invariant, and this class is larger than the class to which $g$ is invariant. One implication of this is that the apparent superiority of one word embedding over another, as measured by word task performance, may largely be a consequence of the arbitrary elements selected from the respective solution sets. We provide a formal treatment of the above identifiability issue, present some numerical examples, and discuss possible resolutions.
Hypernymy, textual entailment, and image captioning can be seen as special cases of a single visual-semantic hierarchy over words, sentences, and images. In this paper we advocate for explicitly modeling the partial order structure of this hierarchy. Towards this goal, we introduce a general method for learning ordered representations, and show how it can be applied to a variety of tasks involving images and language. We show that the resulting representations improve performance over current approaches for hypernym prediction and image-caption retrieval.
We develop new models and algorithms for learning the temporal dynamics of the topic polytopes and related geometric objects that arise in topic model based inference. Our model is nonparametric Bayesian and the corresponding inference algorithm is able to discover new topics as the time progresses. By exploiting the connection between the modeling of topic polytope evolution, Beta-Bernoulli process and the Hungarian matching algorithm, our method is shown to be several orders of magnitude faster than existing topic modeling approaches, as demonstrated by experiments working with several million documents in under two dozens of minutes.
End-to-end (E2E) spoken language understanding (SLU) systems can infer the semantics of a spoken utterance directly from an audio signal. However, training an E2E system remains a challenge, largely due to the scarcity of paired audio-semantics data. In this paper, we treat an E2E system as a multi-modal model, with audio and text functioning as its two modalities, and use a cross-modal latent space (CMLS) architecture, where a shared latent space is learned between the `acoustic and `text embeddings. We propose using different multi-modal losses to explicitly guide the acoustic embeddings to be closer to the text embeddings, obtained from a semantically powerful pre-trained BERT model. We train the CMLS model on two publicly available E2E datasets, across different cross-modal losses and show that our proposed triplet loss function achieves the best performance. It achieves a relative improvement of 1.4% and 4% respectively over an E2E model without a cross-modal space and a relative improvement of 0.7% and 1% over a previously published CMLS model using $L_2$ loss. The gains are higher for a smaller, more complicated E2E dataset, demonstrating the efficacy of using an efficient cross-modal loss function, especially when there is limited E2E training data available.