No Arabic abstract
We have fabricated ferrite cantilevers in which their vibrational properties can be controlled by external magnetic fields. Submicron-scale cantilever structures were made from Y3Fe5O12 (YIG) films by physical etching combined with use of a focused ion beam milling technique. We found that the cantilevers exhibit two resonance modes which correspond to horizontal and vertical vibrations. Under external magnetic fields, the resonance frequency of the horizontal mode increases, while that of the vertical mode decreases, quantitatively consistent with our numerical simulation for magnetic forces. The changes in resonance frequencies with magnetic fields reach a few percent, showing that efficient magnetic control of resonance frequencies was achieved.
Magnetic insulators such as yttrium iron garnet, Y3Fe5O12, with extremely low magnetic damping have opened the door for low power spin-orbitronics due to their low energy dissipation and efficient spin current generation and transmission. We demonstrate reliable and efficient epitaxial growth and nanopatterning of Y3Fe5O12 thin-film based nanostructures on insulating Gd3Ga5O12 substrates. In particular, our fabrication process is compatible with conventional sputtering and liftoff, and does not require aggressive ion milling which may be detrimental to the oxide thin films. Structural and magnetic properties indicate good qualities, in particular low magnetic damping of both films and patterned structures. The dynamic magnetic properties of the nanostructures are systematically investigated as a function of the lateral dimension. By comparing to ferromagnetic nanowire structures, a distinct edge mode in addition to the main mode is identified by both experiments and simulations, which also exhbits cross-over with the main mode upon varying the width of the wires. The non-linear evolution of dynamic modes over nanostructural dimensions highlights the important role of size confinement to their material properties in magnetic devices where Y3Fe5O12 nanostructures serve as the key functional component.
Euler-Bernoulli beam theory is widely used to successfully predict the linear dynamics of micro- and nano-cantilever beams. However, its capacity to characterize the nonlinear dynamics of these devices has not yet been rigorously assessed, despite its use in nanoelectromechanical systems development. In this article, we report the first highly controlled measurements of the nonlinear response of nanomechanical cantilevers using an ultra-linear detection system. This is performed for an extensive range of devices to probe the validity of Euler-Bernoulli theory in the nonlinear regime. We find that its predictions deviate strongly from our measurements for the nonlinearity of the fundamental flexural mode, which show a systematic dependence on aspect ratio (length/width) together with random scatter. This contrasts with the second mode, which is always found to be in good agreement with theory. These findings underscore the delicate balance between inertial and geometric nonlinear effects in the fundamental mode, and strongly motivate further work to develop theories beyond the Euler-Bernoulli approximation.
We present a nanoladder geometry that minimizes the mechanical dissipation of ultrasensitive cantilevers. A nanoladder cantilever consists of a lithographically patterned scaffold of rails and rungs with feature size $sim$ 100 nm. Compared to a rectangular beam of the same dimensions, the mass and spring constant of a nanoladder are each reduced by roughly two orders of magnitude. We demonstrate a low force noise of $158 (+62)(-42),$zN and $190 (+42)(-33),$zN in a one-Hz bandwidth for devices made from silicon and diamond, respectively, measured at temperatures between 100--150 mK. As opposed to bottom-up mechanical resonators like nanowires or nanotubes, nanoladder cantilevers can be batch-fabricated using standard lithography, which is a critical factor for applications in scanning force microscopy.
We report the first study on the thermal behaviour of the stiffness of individual carbon nanotubes, which is achieved by measuring the resonance frequency of their fundamental mechanical bending modes. We observe a reduction of the Youngs modulus over a large temperature range with a slope $-(173pm 65)$ ppm/K in its relative shift. These findings are reproduced by two different theoretical models based on the thermal dynamics of the lattice. These results reveal how the measured fundamental bending modes depend on the phonons in the nanotube via the Youngs modulus. An alternative description based on the coupling between the measured mechanical modes and the phonon thermal bath in the Akhiezer limit is discussed.
We propose two schemes to establish entanglement between two mesoscopic quantum systems through a third mesoscopic quantum system. The first scheme entangles two nano-mechanical oscillators in a non-Gaussian entangled state through a Cooper pair box. Entanglement detection of the nano-mechanical oscillators is equivalent to a teleportation experiment in a mesoscopic setting. The second scheme can entangle two Cooper pair box qubits through a nano-mechanical oscillator in a thermal state without using measurements in the presence of arbitrarily strong decoherence.