Do you want to publish a course? Click here

Generation of single skyrmions by picosecond magnetic field pulses

62   0   0.0 ( 0 )
 Added by Alireza Qaiumzadeh
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We numerically demonstrate an ultrafast method to create $textit{single}$ skyrmions in a $textit{collinear}$ ferromagnetic sample by applying a picosecond (effective) magnetic field pulse in the presence of Dzyaloshinskii-Moriya interaction. For small samples the applied magnetic field pulse could be either spatially uniform or nonuniform while for large samples a nonuniform and localized field is more effective. We examine the phase diagram of pulse width and amplitude for the nucleation. Our finding could ultimately be used to design future skyrmion-based devices.



rate research

Read More

Magnetic chiral skyrmions are vortex like spin structures that appear as stable or meta-stable states in magnetic materials due to the interplay between the symmetric and antisymmetric exchange interactions, applied magnetic field and/or uniaxial anisotropy. Their small size and internal stability make them prospective objects for data storage but for this, the controlled switching between skyrmion states of opposite polarity and topological charge is essential. Here we present a study of magnetic skyrmion switching by an applied magnetic field pulse based on a discrete model of classical spins and atomistic spin dynamics. We found a finite range of coupling parameters corresponding to the coexistence of two degenerate isolated skyrmions characterized by mutually inverted spin structures with opposite polarity and topological charge. We demonstrate how for a wide range of material parameters a short inclined magnetic field pulse can initiate the reliable switching between these states at GHz rates. Detailed analysis of the switching mechanism revealed the complex path of the system accompanied with the excitation of a chiral-achiral meron pair and the formation of an achiral skyrmion.
Voltage manipulation of skyrmions is a promising path towards low-energy spintronic devices. Here, voltage effects on skyrmions in a GdOx/Gd/Co/Pt heterostructure are observed experimentally. The results show that the skyrmion density can be both enhanced and depleted by the application of an electric field, along with the ability, at certain magnetic fields to completely switch the skyrmion state on and off. Further, a zero magnetic field skyrmion state can be stablized under a negative bias voltage using a defined voltage and magnetic field sequence. The voltage effects measured here occur on a few-second timescale, suggesting an origin in voltage-controlled magnetic anisotropy rather than ionic effects. By investigating the skyrmion nucleation rate as a function of temperature, we extract the energy barrier to skyrmion nucleation in our sample. Further, micromagnetic simulations are used to explore the effect of changing the anisotropy and Dzyaloshinskii-Moriya interaction on skyrmion density. Our work demonstrates the control of skyrmions by voltages, showing functionalities desirable for commercial devices.
Recent years have witnessed significant progresses in realizing skyrmions in chiral magnets1-4 and asymmetric magnetic multilayers5-13, as well as their electrical manipulation2,7,8,10. Equally important, thermal generation, manipulation and detection of skyrmions can be exploited for prototypical new architecture with integrated computation14 and energy harvesting15. It has yet to verify if skyrmions can be purely generated by heating16,17, and if their resultant direction of motion driven by temperature gradients follows the diffusion or, oppositely, the magnonic spin torque17-21. Here, we address these important issues in microstructured devices made of multilayers: (Ta_CoFeB_MgO)15, (Pt_CoFeB_MgO_Ta)15 and (Pt_Co_Ta)15 integrated with on-chip heaters, by using a full-field soft X-ray microscopy. The thermal generation of densely packed skyrmions is attributed to the low energy barrier at the device edge, together with the thermally induced morphological transition from stripe domains to skyrmions. The unidirectional diffusion of skyrmions from the hot region towards the cold region is experimentally observed. It can be theoretically explained by the combined contribution from repulsive forces between skyrmions, and thermal spin-orbit torques in competing with magnonic spin torques17,18,20,21 and entropic forces22. These thermally generated skyrmions can be further electrically detected by measuring the accompanied anomalous Nernst voltages23. The on-chip thermoelectric generation, manipulation and detection of skyrmions could open another exciting avenue for enabling skyrmionics, and promote interdisciplinary studies among spin caloritronics15, magnonics24 and skyrmionics3,4,12.
It is well established that the spin-orbit interaction in heavy metal/ferromagnet heterostructures leads to a significant interfacial Dzyaloshinskii-Moriya Interaction (DMI) that modifies the internal structure of magnetic domain walls (DWs) to favor N{e}el over Bloch type configurations. However, the impact of such a transition on the structure and stability of internal DW defects (e.g., vertical Bloch lines) has not yet been explored. We present a combination of analytical and micromagnetic calculations to describe a new type of topological excitation called a DW Skyrmion characterized by a $360^circ$ rotation of the internal magnetization in a Dzyaloshinskii DW. We further propose a method to identify DW Skyrmions experimentally using Fresnel mode Lorentz TEM; simulated images of DW Skyrmions using this technique are presented based on the micromagnetic results.
When magnetic skyrmions are moved via currents, they do not strictly travel along the path of the current, instead their motion also gains a transverse component. This so-called skyrmion Hall effect can be detrimental in potential skyrmion devices because it drives skyrmions towards the edge of their hosting material where they face potential annihilation. Here we experimentally modify a skyrmion model system - an atomic Pd/Fe bilayer on Ir(111) - by decorating the film edge with ferromagnetic Co/Fe patches. Employing spin-polarized scanning tunneling microscopy, we demonstrate that this ferromagnetic rim prevents skyrmion annihilation at the film edge and stabilizes skyrmions and target states in zero field. Furthermore, in an external magnetic field the Co/Fe rim can give rise to skyrmions pinned to the film edge. Spin dynamics simulations reveal how a combination of different attractive and repulsive skyrmion-edge interactions can induce such an edge-pinning effect for skyrmions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا