Do you want to publish a course? Click here

A unified theory for continuous in time evolving finite element space approximations to partial differential equations in evolving domains

81   0   0.0 ( 0 )
 Added by Thomas Ranner
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We develop a unified theory for continuous in time finite element discretisations of partial differential equations posed in evolving domains including the consideration of equations posed on evolving surfaces and bulk domains as well coupled surface bulk systems. We use an abstract variational setting with time dependent function spaces and abstract time dependent finite element spaces. Optimal a priori bounds are shown under usual assumptions on perturbations of bilinear forms and approximation properties of the abstract finite element spaces. The abstract theory is applied to evolving finite elements in both flat and curved spaces. Evolving bulk and surface isoparametric finite element spaces defined on evolving triangulations are defined and developed. These spaces are used to define approximations to parabolic equations in general domains for which the abstract theory is shown to apply. Numerical experiments are described which confirm the rates of convergence.



rate research

Read More

In this work, an $r$-linearly converging adaptive solver is constructed for parabolic evolution equations in a simultaneous space-time variational formulation. Exploiting the product structure of the space-time cylinder, the family of trial spaces that we consider are given as the spans of wavelets-in-time and (locally refined) finite element spaces-in-space. Numerical results illustrate our theoretical findings.
In this paper, we introduce and analyse a surface finite element discretization of advection-diffusion equations with uncertain coefficients on evolving hypersurfaces. After stating unique solvability of the resulting semi-discrete problem, we prove optimal error bounds for the semi-discrete solution and Monte Carlo samplings of its expectation in appropriate Bochner spaces. Our theoretical findings are illustrated by numerical experiments in two and three space dimensions.
Sparse spectral methods for solving partial differential equations have been derived in recent years using hierarchies of classical orthogonal polynomials on intervals, disks, and triangles. In this work we extend this methodology to a hierarchy of non-classical orthogonal polynomials on disk slices (e.g. a half-disk) and trapeziums. This builds on the observation that sparsity is guaranteed due to the boundary being defined by an algebraic curve, and that the entries of partial differential operators can be determined using formulae in terms of (non-classical) univariate orthogonal polynomials. We apply the framework to solving the Poisson, variable coefficient Helmholtz, and Biharmonic equations.
In this paper, we define new unfitted finite element methods for numerically approximating the solution of surface partial differential equations using bulk finite elements. The key idea is that the $n$-dimensional hypersurface, $Gamma subset mathbb{R}^{n+1}$, is embedded in a polyhedral domain in $mathbb R^{n+1}$ consisting of a union, $mathcal{T}_h$, of $(n+1)$-simplices. The finite element approximating space is based on continuous piece-wise linear finite element functions on $mathcal{T}_h$. Our first method is a sharp interface method, emph{SIF}, which uses the bulk finite element space in an approximating weak formulation obtained from integration on a polygonal approximation, $Gamma_{h}$, of $Gamma$. The full gradient is used rather than the projected tangential gradient and it is this which distinguishes emph{SIF} from the method of [42]. The second method, emph{NBM}, is a narrow band method in which the region of integration is a narrow band of width $O(h)$. emph{NBM} is similar to the method of [13]. but again the full gradient is used in the discrete weak formulation. The a priori error analysis in this paper shows that the methods are of optimal order in the surface $L^{2}$ and $H^{1}$ norms and have the advantage that the normal derivative of the discrete solution is small and converges to zero. Our third method combines bulk finite elements, discrete sharp interfaces and narrow bands in order to give an unfitted finite element method for parabolic equations on evolving surfaces. We show that our method is conservative so that it preserves mass in the case of an advection diffusion conservation law. Numerical results are given which illustrate the rates of convergence.
We consider a stabilized finite element method based on a spacetime formulation, where the equations are solved on a global (unstructured) spacetime mesh. A unique continuation problem for the wave equation is considered, where data is known in an interior subset of spacetime. For this problem, we consider a primal-dual discrete formulation of the continuum problem with the addition of stabilization terms that are designed with the goal of minimizing the numerical errors. We prove error estimates using the stability properties of the numerical scheme and a continuum observability estimate, based on the sharp geometric control condition by Bardos, Lebeau and Rauch. The order of convergence for our numerical scheme is optimal with respect to stability properties of the continuum problem and the interpolation errors of approximating with polynomial spaces. Numerical examples are provided that illustrate the methodology.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا