No Arabic abstract
In this paper, we define new unfitted finite element methods for numerically approximating the solution of surface partial differential equations using bulk finite elements. The key idea is that the $n$-dimensional hypersurface, $Gamma subset mathbb{R}^{n+1}$, is embedded in a polyhedral domain in $mathbb R^{n+1}$ consisting of a union, $mathcal{T}_h$, of $(n+1)$-simplices. The finite element approximating space is based on continuous piece-wise linear finite element functions on $mathcal{T}_h$. Our first method is a sharp interface method, emph{SIF}, which uses the bulk finite element space in an approximating weak formulation obtained from integration on a polygonal approximation, $Gamma_{h}$, of $Gamma$. The full gradient is used rather than the projected tangential gradient and it is this which distinguishes emph{SIF} from the method of [42]. The second method, emph{NBM}, is a narrow band method in which the region of integration is a narrow band of width $O(h)$. emph{NBM} is similar to the method of [13]. but again the full gradient is used in the discrete weak formulation. The a priori error analysis in this paper shows that the methods are of optimal order in the surface $L^{2}$ and $H^{1}$ norms and have the advantage that the normal derivative of the discrete solution is small and converges to zero. Our third method combines bulk finite elements, discrete sharp interfaces and narrow bands in order to give an unfitted finite element method for parabolic equations on evolving surfaces. We show that our method is conservative so that it preserves mass in the case of an advection diffusion conservation law. Numerical results are given which illustrate the rates of convergence.
The paper is concerned with the adaptive finite element solution of linear elliptic differential equations using equidistributing meshes. A strategy is developed for defining this type of mesh based on residual-based a posteriori error estimates and rigorously analyzing the convergence of a linear finite element approximation using them. The existence and computation of equidistributing meshes and the continuous dependence of the finite element approximation on mesh are also studied. Numerical results are given to verify the theoretical findings.
Sparse spectral methods for solving partial differential equations have been derived in recent years using hierarchies of classical orthogonal polynomials on intervals, disks, and triangles. In this work we extend this methodology to a hierarchy of non-classical orthogonal polynomials on disk slices (e.g. a half-disk) and trapeziums. This builds on the observation that sparsity is guaranteed due to the boundary being defined by an algebraic curve, and that the entries of partial differential operators can be determined using formulae in terms of (non-classical) univariate orthogonal polynomials. We apply the framework to solving the Poisson, variable coefficient Helmholtz, and Biharmonic equations.
In this work, we present an adaptive unfitted finite element scheme that combines the aggregated finite element method with parallel adaptive mesh refinement. We introduce a novel scalable distributed-memory implementation of the resulting scheme on locally-adapted Cartesian forest-of-trees meshes. We propose a two-step algorithm to construct the finite element space at hand by means of a discrete extension operator that carefully mixes aggregation constraints of problematic degrees of freedom, which get rid of the small cut cell problem, and standard hanging degree of freedom constraints, which ensure trace continuity on non-conforming meshes. Following this approach, we derive a finite element space that can be expressed as the original one plus well-defined linear constraints. Moreover, it requires minimum parallelization effort, using standard functionality available in existing large-scale finite element codes. Numerical experiments demonstrate its optimal mesh adaptation capability, robustness to cut location and parallel efficiency, on classical Poisson $hp$-adaptivity benchmarks. Our work opens the path to functional and geometrical error-driven dynamic mesh adaptation with the aggregated finite element method in large-scale realistic scenarios. Likewise, it can offer guidance for bridging other scalable unfitted methods and parallel adaptive mesh refinement.
In this paper, we introduce and analyse a surface finite element discretization of advection-diffusion equations with uncertain coefficients on evolving hypersurfaces. After stating unique solvability of the resulting semi-discrete problem, we prove optimal error bounds for the semi-discrete solution and Monte Carlo samplings of its expectation in appropriate Bochner spaces. Our theoretical findings are illustrated by numerical experiments in two and three space dimensions.
Unfitted finite element methods, e.g., extended finite element techniques or the so-called finite cell method, have a great potential for large scale simulations, since they avoid the generation of body-fitted meshes and the use of graph partitioning techniques, two main bottlenecks for problems with non-trivial geometries. However, the linear systems that arise from these discretizations can be much more ill-conditioned, due to the so-called small cut cell problem. The state-of-the-art approach is to rely on sparse direct methods, which have quadratic complexity and are thus not well suited for large scale simulations. In order to solve this situation, in this work we investigate the use of domain decomposition preconditioners (balancing domain decomposition by constraints) for unfitted methods. We observe that a straightforward application of these preconditioners to the unfitted case has a very poor behavior. As a result, we propose a {customization} of the classical BDDC methods based on the stiffness weighting operator and an improved definition of the coarse degrees of freedom in the definition of the preconditioner. These changes lead to a robust and algorithmically scalable solver able to deal with unfitted grids. A complete set of complex 3D numerical experiments show the good performance of the proposed preconditioners.