No Arabic abstract
Observations of accreting neutron stars (NS) with strong magnetic fields can be used not only for studying the accretion flow interaction with NS magnetospheres, but also for understanding the physical processes inside NSs and for estimating their fundamental parameters. Of particular interest are (i) the interaction of a rotating neutron star (magnetosphere) with the in-falling matter at different accretion rates, and (ii) the theory of deep crustal heating and the influence of a strong magnetic field on this process. Here, we present results of the first systematic investigation of 16 X-ray pulsars with Be optical companions during their quiescent states, based on data from the Chandra, XMM-Newton and Swift observatories. The whole sample of sources can be roughly divided into two distinct groups: i) relatively bright objects with a luminosity around ~10^34 erg/s and (hard) power-law spectra, and ii) fainter ones showing thermal spectra. X-ray pulsations were detected from five objects in group i) with quite a large pulse fraction of 50-70 per cent. The obtained results are discussed within the framework of the models describing the interaction of the in-falling matter with the neutron star magnetic field and those describing heating and cooling in accreting NSs.
During normal Type I outbursts, the pulse profiles of Be/X-ray binary pulsars are found to be complex in soft X-ray energy ranges. The profiles in soft X-ray energy ranges are characterized by the presence of narrow absorption dips or dip-like features at several pulse phases. However, in hard X-ray energy ranges, the pulse profiles are rather smooth and single-peaked. Pulse phase-averaged spectroscopy of the these pulsars had been carried out during Type I outbursts. The broad-band spectrum of these pulsars were well described by partial covering high energy cutoff power-law model with interstellar absorption and Iron K_alpha emission line at 6.4 keV. Phase-resolved spectroscopy revealed that the presence of additional matter at certain pulse phases that partially obscured the emitted radiation giving rise to dips in the pulse profiles. The additional absorption is understood to be taking place by matter in the accretion streams that are phase locked with the neutron star. Optical/infrared observations of the companion Be star during these Type I outbursts showed that the increase in the X-ray intensity of the pulsar is coupled with the decrease in the optical/infrared flux of the companion star. There are also several changes in the IR/optical emission line profiles during these X-ray outbursts. The X-ray properties of these pulsars during Type I outbursts and corresponding changes in optical/infrared wavebands are discussed in this paper.
Radiation of X-ray bursts and of accretion shocks in weakly magnetized neutron stars in low-mass X-ray binaries is produced in plane-parallel atmospheres dominated by electron scattering. We first discuss polarization produced by single (non-magnetic) Compton scattering, in particular the depolarizing effect of high electron temperature, and then the polarization due to multiply electron scattering in a slab. We further predict the X-ray pulse profiles and polarization properties of nuclear- and accretion-powered millisecond pulsars. We introduce a relativistic rotation vector model, which includes the effect of rotation of polarization plane due to the rapid motion of the hot spot as well as the light bending. Future observations of the X-ray polarization will provide a valuable tool to test the geometry of the emission region in pulsars and its physical characteristics.
The discovery of source states in the X-ray emission of black-hole binaries and neutron-star low-mass X-ray binaries constituted a major step forward in the understanding of the physics of accretion onto compact objects. While there are numerous studies on the correlated timing and spectral variability of these systems, very little work has been done on high-mass X-ray binaries, the third major type of X-ray binaries. The main goal of this work is to investigate whether Be accreting X-ray pulsars display source states and characterise those states through their spectral and timing properties. We have made a systematic study of the power spectra, energy spectra and X-ray hardness-intensity diagrams of nine Be/X-ray pulsars. The evolution of the timing and spectral parameters were monitored through changes over two orders of magnitude in luminosity. We find that Be/X-ray pulsars trace two different branches in the hardness-intensity diagram: the horizontal branch corresponds to a low-intensity state of the source and it is characterised by fast colour and spectral changes and high X-ray variability. The diagonal branch is a high-intensity state that emerges when the X-ray luminosity exceeds a critical limit. The photon index anticorrelates with X-ray flux in the horizontal branch but correlates with it in the diagonal branch. The correlation between QPO frequency and X-ray flux reported in some pulsars is also observed if the peak frequency of the broad-band noise that accounts for the aperiodic variability is used. The two branches may reflect two different accretion modes, depending on whether the luminosity of the source is above or below a critical value. This critical luminosity is mainly determined by the magnetic field strength, hence it differs for different sources.
We investigate X-ray emission properties of the peculiar X-ray source Theta2 Ori A in the Orion trapezium region using more than 500 ksec of HETGS spectral data in the quiescent state. The amount of exposure provides tight constraints on several important diagnostics involving O, Ne, Mg, and Si line flux ratios from He-like ion triplets, resonance line ratios of the H- and He-like lines and line widths. Accounting for the influence of the strong UV radiation field of the O9.7V star we can now place the He-like line origin well within two stellar radii of the O-stars surface. The lines are resolved with average line widths of 341+-38 km/s confirming a line origin relatively close to the stellar surface. In the framework of standard wind models this implies a rather weak, low opacity wind restricting wind shocks to temperatures not much larger than 2x10^6 K. The emission measure distribution of the X-ray spectrum, as reported previously, includes very high temperature components which are not easily explained in this framework. The X-ray properties are also not consistent with coronal emissions from an unseen low-mass companion nor with typical signatures from colliding wind interactions. The properties are more consistent with X-ray signatures observed in the massive Trapezium star Theta1 Ori C which has recently been successfully modeled with a magnetically confined wind model.
This is a catalogue of approximately 70 X-ray emitting binary systems in the Small Magellanic Cloud (SMC) that contain a Be star as the mass donor in the system and a clear X-ray pulse signature from a neutron star. The systems are generally referred to as Be/Xray binaries. It lists all their known binary characteristics (orbital period, eccentricity), the measured spin period of the compact object, plus the characteristics of the Be star (spectral type, size of the circumstellar disk, evidence for NRP behaviour). For the first time data from the Spitzer Observatory are combined with ground-based data to provide a view of these systems out into the far-IR. Many of the observational parameters are presented as statistical distributions and compared to other similar similar populations (eg isolated Be & B stars) in the SMC, and to other Be/X-ray systems in the Milky Way. In addition previous important results are re-investigated using this excellently homogeneous sample. In particular, the evidence for a bi-modality in the spin period distribution is shown to be even stronger than first proposed, and the correlation between orbital period and circumstellar disk size seen in galactic sources is shown to be clearly present in the SMC systems and quantised for the first time.