Do you want to publish a course? Click here

Rapid Formation of Massive Black Holes in close proximity to Embryonic Proto-Galaxies

151   0   0.0 ( 0 )
 Added by John Regan
 Publication date 2017
  fields Physics
and research's language is English
 Authors John Regan




Ask ChatGPT about the research

The Direct Collapse Black Hole (DCBH) scenario provides a solution for forming the massive black holes powering bright quasars observed in the early Universe. A prerequisite for forming a DCBH is that the formation of (much less massive) Population III stars be avoided - this can be achieved by destroying H$_2$ via Lyman-Werner (LW) radiation (E$_{rm{LW}}$ = 12.6 eV). We find that two conditions must be met in the proto-galaxy that will host the DCBH. First, prior star formation must be delayed; this can be achieved with a background LW flux of J$_{rm BG} gtrsim 100 J_{21}$. Second, an intense burst of LW radiation from a neighbouring star-bursting proto-galaxy is required, just before the gas cloud undergoes gravitational collapse, to finally suppress star formation completely. We show here for the first time using high-resolution hydrodynamical simulations, including full radiative transfer, that this low-level background, combined with tight synchronisation and irradiation of a secondary proto-galaxy by a primary proto-galaxy, inevitably moves the secondary proto-galaxy onto the isothermal atomic cooling track, without the deleterious effects of either photo-evaporating the gas or polluting it by heavy elements. These, atomically cooled, massive proto-galaxies are expected to ultimately form a DCBH of mass $10^4 - 10^5 M_{odot}$.

rate research

Read More

The population of massive black holes (MBHs) in dwarf galaxies is elusive, but fundamentally important to understand the coevolution of black holes with their hosts and the formation of the first collapsed objects in the Universe. While some progress was made in determining the X-ray detected fraction of MBHs in dwarfs, with typical values ranging from $0%$ to $6%$, their overall active fraction, ${cal A}$, is still largely unconstrained. Here, we develop a theoretical model to predict the multiwavelength active fraction of MBHs in dwarf galaxies starting from first principles and based on the physical properties of the host, namely, its stellar mass and angular momentum content. We find multiwavelength active fractions for MBHs, accreting at typically low rates, ranging from $5%$ to $22%$, and increasing with the stellar mass of the host as ${cal A} sim(log_{10}M_{star})^{4.5}$. If dwarfs are characterized by low-metallicity environments, the active fraction may reach $sim 30%$ for the most massive hosts. For galaxies with stellar mass in the range $10^7<M_{star} [M_{odot}]<10^{10}$, our predictions are in agreement with occupation fractions derived from simulations and semi-analytical models. Additionally, we provide a fitting formula to predict the probability of finding an active MBH in a dwarf galaxy from observationally derived data. This model will be instrumental to guide future observational efforts to find MBHs in dwarfs. The James Webb Space Telescope, in particular, will play a crucial role in detecting MBHs in dwarfs, possibly uncovering active fractions $sim 3$ times larger than current X-ray surveys.
We present high-quality fluid dynamical simulations of isothermal gas flows in a rotating barred potential. We show that a large quantity of gas is driven right into the nucleus of a model galaxy when the potential lacks a central mass concentration, but the inflow stalls at a nuclear ring in comparison simulations that include a central massive object. The radius of the nuclear gas ring increases linearly with the mass of the central object. We argue that bars drive gas right into the nucleus in the early stages of disk galaxy formation, where a nuclear star cluster and perhaps a massive black hole could be created. The process is self-limiting, however, because inflow stalls at a nuclear ring once the mass of gas and stars in the nucleus exceeds ~1% of the disk mass, which shuts off rapid growth of the black hole. We briefly discuss the relevance of these results to the seeding of massive black holes in galaxies, the merger model for quasar evolution, and the existence of massive black holes in disk galaxies that lack a significant classical bulge.
Models aiming to explain the formation of massive black hole seeds, and in particular the direct collapse scenario, face substantial difficulties. These are rooted in rather ad hoc and fine-tuned initial conditions, such as the simultaneous requirements of extremely low metallicities and strong radiation backgrounds. Here we explore a modification of such scenarios where a massive primordial star cluster is initially produced. Subsequent stellar collisions give rise to the formation of massive (10^4 - 10^5 solar mass) objects. Our calculations demonstrate that the interplay between stellar dynamics, gas accretion and protostellar evolution is particularly relevant. Gas accretion onto the protostars enhances their radii, resulting in an enhanced collisional cross section. We show that the fraction of collisions can increase from 0.1-1% of the initial population to about 10% when compared to gas-free models or models of protostellar clusters in the local Universe. We conclude that very massive objects can form in spite of initial fragmentation, making the first massive protostellar clusters viable candidate birth places for observed supermassive black holes.
72 - Fazeel M. Khan 2016
Supermassive black holes (SMBHs) are ubiquitous in galaxies with a sizable mass. It is expected that a pair of SMBHs originally in the nuclei of two merging galaxies would form a binary and eventually coalesce via a burst of gravitational waves. So far theoretical models and simulations have been unable to predict directly the SMBH merger timescale from ab-initio galaxy formation theory, focusing only on limited phases of the orbital decay of SMBHs under idealized conditions of the galaxy hosts. The predicted SMBH merger timescales are long, of order Gyrs, which could be problematic for future gravitational wave searches. Here we present the first multi-scale $Lambda$CDM cosmological simulation that follows the orbital decay of a pair of SMBHs in a merger of two typical massive galaxies at $zsim3$, all the way to the final coalescence driven by gravitational wave emission. The two SMBHs, with masses $sim10^{8}$ M$_{odot}$, settle quickly in the nucleus of the merger remnant. The remnant is triaxial and extremely dense due to the dissipative nature of the merger and the intrinsic compactness of galaxies at high redshift. Such properties naturally allow a very efficient hardening of the SMBH binary. The SMBH merger occurs in only $sim10$ Myr after the galactic cores have merged, which is two orders of magnitude smaller than the Hubble time.
The dynamics of massive black holes (BHs) in galaxy mergers is a rich field of research that has seen much progress in recent years. In this contribution we briefly review the processes describing the journey of BHs during mergers, from the cosmic context all the way to when BHs coalesce. If two galaxies each hosting a central BH merge, the BHs would be dragged towards the center of the newly formed galaxy. If/when the holes get sufficiently close, they coalesce via the emission of gravitational waves. How often two BHs are involved in galaxy mergers depends crucially on how many galaxies host BHs and on the galaxy merger history. It is therefore necessary to start with full cosmological models including BH physics and a careful dynamical treatment. After galaxies have merged, however, the BHs still have a long journey until they touch and coalesce. Their dynamical evolution is radically different in gas-rich and gas-poor galaxies, leading to a sort of dichotomy between high-redshift and low-redshift galaxies, and late-type and early-type, typically more massive galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا