No Arabic abstract
Through an innovative combination of multiple observing techniques and mod- eling, we are assembling a comprehensive understanding of the pulsation and close environment of Cepheids. We developed the SPIPS modeling tool that combines all observables (radial velocimetry, photometry, angular diameters from interferometry) to derive the relevant physical parameters of the star (effective temperature, infrared ex- cess, reddening,...) and the ratio of the distance and the projection factor d/p. We present the application of SPIPS to the long-period Cepheid RS Pup, for which we derive p = 1.25 +/- 0.06. The addition of this massive Cepheid consolidates the existing sample of p-factor measurements towards long-period pulsators. This allows us to conclude that p is constant or mildly variable around p = 1.29 +/- 0.04 (+/-3%) as a function of the pulsation period. The forthcoming Gaia DR2 will provide a considerable improvement in quantity and accuracy of the trigonometric parallaxes of Cepheids. From this sample, the SPIPS modeling tool will enable a robust calibration of the Cepheid distance scale.
We present the modeling tool we developed to incorporate multi-technique observations of Cepheids in a single pulsation model: the Spectro-Photo-Interferometry of Pulsating Stars (SPIPS). The combination of angular diameters from optical interferometry, radial velocities and photometry with the coming Gaia DR2 parallaxes of nearby Galactic Cepheids will soon enable us to calibrate the projection factor of the classical Parallax-of-Pulsation method. This will extend its applicability to Cepheids too distant for accurate Gaia parallax measurements, and allow us to precisely calibrate the Leavitt laws zero point. As an example application, we present the SPIPS model of the long-period Cepheid RS Pup that provides a measurement of its projection factor, using the independent distance estimated from its light echoes.
This review examines progress on the Pop I, fundamental-mode Cepheid distance scale with emphasis on recent developments in geometric and quasi-geometric techniques for Cepheid distance determination. Specifically I examine the surface brightness method, interferometric pulsation method, and trigonometric measurements. The three techniques are found to be in excellent agreement for distance measures in the Galaxy. The velocity p-factor is of crucial importance in the first two of these methods. A comparison of recent determinations of the p-factor for Cepheids demonstrates that observational measures of p and theoretical predictions agree within their uncertainties for Galactic Cepheids.
We present new absolute trigonometric parallaxes and proper motions for seven Pop II variable stars: five RR Lyr variables; RZ Cep, XZ Cyg, SU Dra, RR Lyr, UV Oct; and two type 2 Cepheids; VY Pyx and {kappa} Pav. We obtained these results with astrometric data from Fine Guidance Sensors, white-light interfer- ometers on Hubble Space Telescope. We find absolute parallaxes in milliseconds of arc: RZ Cep, 2.12pm0.16 mas; XZ Cyg, 1.67pm0.17 mas; SU Dra, 1.42pm0.16 mas; RR Lyr, 3.77pm0.13 mas; UV Oct, 1.71pm0.10 mas; VY Pyx, 6.44pm0.23 mas; and {kappa} Pav, 5.57pm0.28 mas; an average {sigma}{pi}/{pi} = 5.4%. With these parallaxes we compute absolute magnitudes in V and K bandpasses corrected for interstellar extinction and Lutz-Kelker-Hanson bias. Using these RRL absolute magnitudes, we then derive zero-points for MV -[Fe/H] and MK -[Fe/H]-Log P relations. The technique of reduced parallaxes corroborates these results. We employ our new results to determine distances and ages of several Galactic globular clusters and the dis- tance of the LMC. The latter is close to that previously derived from Classical Cepheids uncorrected for any metallicity effect, indicating that any such effect is small. We also discuss the somewhat puzzling results obtained for our two type 2 Cepheids.
Hipparcos, the first ever experiment of global astrometry, was launched by ESA in 1989 and its results published in 1997 (Perryman et al., Astron. Astrophys. 323, L49, 1997; Perryman & ESA (eds), The Hipparcos and Tycho catalogues, ESA SP-1200, 1997). A new reduction was later performed using an improved satellite attitude reconstruction leading to an improved accuracy for stars brighter than 9th magnitude (van Leeuwen & Fantino, Astron. Astrophys. 439, 791, 2005; van Leeuwen, Astron. Astrophys. 474, 653, 2007). The Hipparcos Catalogue provided an extended dataset of very accurate astrometric data (positions, trigonometric parallaxes and proper motions), enlarging by two orders of magnitude the quantity and quality of distance determinations and luminosity calibrations. The availability of more than 20000 stars with a trigonometric parallax known to better than 10% opened the way to a drastic revision of our 3-D knowledge of the solar neighbourhood and to a renewal of the calibration of many distance indicators and age estimations. The prospects opened by Gaia, the next ESA cornerstone, planned for launch in June 2013 (Perryman et al., Astron. Astrophys. 369, 339, 2001), are still much more dramatic: a billion objects with systematic and quasi simultaneous astrometric, spectrophotometric and spectroscopic observations, about 150 million stars with expected distances to better than 10%, all over the Galaxy. All stellar distance indicators, in very large numbers, will be directly measured, providing a direct calibration of their luminosity and making possible detailed studies of the impacts of various effects linked to chemical element abundances, age or cluster membership. With the help of simulations of the data expected from Gaia, obtained from the mission simulator developed by DPAC, we will illustrate what Gaia can provide with some selected examples.