Do you want to publish a course? Click here

Baryon number current in holographic noncommutative QCD

191   0   0.0 ( 0 )
 Added by Tadahito Nakajima
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We consider the noncommutative deformation of the finite temperature holographic QCD (Sakai--Sugimoto) model in external electric and magnetic field and evaluate the effect of the noncommutaivity on the properties of the conductor-insulator phase transition associated with a baryon number current. Although the noncommutative deformation of the gauge theory does not change the phase structure with respect to the baryon number current, the transition temperature $T_{c}$, the transition electric field $e_{c}$ and magnetic field $b_{c}$ in the conductor-insurator phase transition depend on the noncommutativity parameter $theta$. Namely, the noncommutativity of space coordinates has an influence on the shape of the phase diagram for the conductor-insurator phase transition. On the other hand, the allowed range of the noncommutativity parameter can be restricted by the reality condition of the constants of motion.



rate research

Read More

We consider the noncommutative deformation of the Sakai--Sugimoto model at finite temperature and finite baryon chemical potential. The space noncommutativity is possible to have an influence on the flavor dynamics of the QCD. The critical temperature and critical value of the chemical potential are modified by the space noncommutativity. The influence of the space noncommutativity on the flavor dynamics of the QCD is caused by the Wess--Zumino term in the effective action of the D8-branes. The intermediate temperature phase, in which the gluons deconfine but the chiral symmetry remains broken, is easy to be realized in some region of the noncommutativity parameter.
We study the baryon vertex (BV) in the presence of medium using DBI action and the force balance condition between BV and the probe branes. We note that a stable BV configuration exists only in some of the confining backgrounds. For the system of finite density, the issue is whether there is a canonical definition for the baryon mass in the medium. In this work, we define it as the energy of the deformed BV satisfying the force balance condition (FBC) with the probe brane. With FBC, lengths of the strings attached to the BV tend to be zero while the compact branes are enlongated to mimic the string. We attribute the deformation energy of the probe brane to the baryon-baryon interaction. We show that for a system with heavy quarks the baryon mass drops monotonically as a function of density while it has minimum in case of light quark system.
We have constructed a noncommutative deformation of the holographic QCD (Sakai-Sugimoto) model and evaluated the mass spectrum of low spin vector mesons at finite temperature. The masses of light vector- and pseudovector-meson in the noncommutative holographic QCD model reduces over the whole area in the intermediate-temperature regime compared to the commutative case. However, the space noncommutativity does not change the properties of temperature dependence for the mass spectrum of low spin mesons. The masses of meson also decrease with increasing temperature in noncommutative case.
We establish a holographic bottom-up model which covers both the baryonic and quark matter phases in cold and dense QCD. This is obtained by including the baryons using simple approximation schemes in the V-QCD model, which also includes the backreaction of the quark matter to the dynamics of pure Yang-Mills. We examine two approaches for homogeneous baryon matter: baryons as a thin layer of noninteracting matter in the holographic bulk, and baryons with a homogeneous bulk gauge field. We find that the second approach exhibits phenomenologically reasonable features. At zero temperature, the vacuum, baryon, and quark matter phases are separated by strongly first order transitions as the chemical potential varies. The equation of state in the baryonic phase is found to be stiff, i.e., the speed of sound clearly exceeds the value $c_s^2=1/3$ of conformal plasmas at high baryon densities.
We investigate the phase structure of strongly interacting matter and baryon number fluctuations in the Polyakov loop improved Nambu--Jona-Lasinio (PNJL) model. The calculation shows that both the chiral and deconfinement transitions, as well as their coincidence and separation determine the basic QCD phase structure. The contour maps and the three-dimensional diagrams of the net-baryon kurtosis and skewness present well the trace of QCD phase structure. Comparing with the experimental data, we find that the existence of a critical end point (CEP) of chiral transition is crucial to explain the non-monotonic energy dependence and the large deviation from Poisson baseline of net-proton kurtosis. In particular, the relation between the chiral and deconfinement transitions in the crossover region is also reflected by the baryon number fluctuations. This study shows that the measurements of higher moments of multiplicity distributions of conserved charges are powerful to investigate the criticality and even the chiral and deconfinement transitions in the crossover region.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا