No Arabic abstract
We investigate the phase structure of strongly interacting matter and baryon number fluctuations in the Polyakov loop improved Nambu--Jona-Lasinio (PNJL) model. The calculation shows that both the chiral and deconfinement transitions, as well as their coincidence and separation determine the basic QCD phase structure. The contour maps and the three-dimensional diagrams of the net-baryon kurtosis and skewness present well the trace of QCD phase structure. Comparing with the experimental data, we find that the existence of a critical end point (CEP) of chiral transition is crucial to explain the non-monotonic energy dependence and the large deviation from Poisson baseline of net-proton kurtosis. In particular, the relation between the chiral and deconfinement transitions in the crossover region is also reflected by the baryon number fluctuations. This study shows that the measurements of higher moments of multiplicity distributions of conserved charges are powerful to investigate the criticality and even the chiral and deconfinement transitions in the crossover region.
The appearance of large, none-Gaussian cumulants of the baryon number distribution is commonly discussed as a signal for the QCD critical point. We review the status of the Taylor expansion of cumulant ratios of baryon number fluctuations along the freeze-out line and also compare QCD results with the corresponding proton number fluctuations as measured by the STAR Collaboration at RHIC. To further constrain the location of a possible QCD critical point we discuss poles of the baryon number fluctuations in the complex plane. Here we use not only the Taylor coefficients obtained at zero chemical potential but perform also calculations of Taylor expansion coefficients of the pressure at purely imaginary chemical potentials.
The net-baryon number fluctuations for three-flavor quark matter are computed within the Polyakov extended Nambu$-$Jona-Lasinio model. Two models with vanishing and nonvanishing vector interactions are considered. While the former predicts a critical end point (CEP) in the phase diagram, the latter predicts no CEP. We show that the nonmonotonic behavior of the susceptibilities in the phase diagram is still present even in the absence of a CEP. Therefore, from the nonmonotonic behavior of the susceptibilities solely, one cannot assume the existence of a CEP. We analyze other possible properties that may distinguish the two scenarios, and determine the behavior of the net-baryon number fluctuations and the velocity of sound along several isentropes, with moderate and small values. It is shown that the value of the susceptibilities ratios and the velocity of sound at two or three isentropic lines could possibly allow to distinguish both scenarios, a phase diagram with or without CEP. Smoother behaviors of these quantities may indicate the nonexistence of a CEP. We also discuss the critical behavior of the strange sector.
The classical transitions between topologically distinct vacua in a SU(2)-Higgs model, using a Higgs field of mass approximately 120 GeV, is examined to probe the crossover region between the symmetric and broken phase. For the volumes used, this crossover is approximately 10 GeV wide.
The kurtosis and skewness of net baryon-number fluctuations are studied for the magnetized phase diagram of three-flavor quark matter within the Polyakov extended Nambu$-$Jona-Lasinio model. Two models with magnetic catalysis and inverse magnetic catalysis are considered. Special attention is given to their behavior in the neighborhood of the light and strange critical end points (CEPs). Several isentropic trajectories that come close the CEPs are studied in order to analyze possible signatures of a CEP in the presence of external magnetic fields. The effect of the magnetic field on the velocity of sound, $v_s^2$, when both the light and strange CEPs are approached from the crossover region is also investigated by calculating their temperature and baryon chemical potential dependencies at fixed distances from these CEPs. Regions with large fluctuations but no CEP in nonmagnetized matter develop a CEP under the action of a strong magnetic field. Besides, the Landau quantization of the quark trajectories may result in the appearance of extra CEPs, in particular, in the strange sector for strong magnetic fields, identifiable by the net baryon-number fluctuations. Stiffer (smoother) fluctuations in the region of the CEP are characteristic of models that do not predict (do predict) the inverse magnetic catalysis at zero chemical potential. Particularly interesting is the ratio $chi^4_B/chi^2_B$ that has a more pronounced peak structure, indicating that it is eventually a more convenient probe for the search of a CEP. The speed of sound shows a much richer structure in magnetized quark matter and allows one to identify both chiral and deconfinement transitions.
Fluctuations of conserved charges are sensitive to the QCD phase transition and a possible critical endpoint in the phase diagram at finite density. In this work, we compute the baryon number fluctuations up to tenth order at finite temperature and density. This is done in a QCD-assisted effective theory that accurately captures the quantum- and in-medium effects of QCD at low energies. A direct computation at finite density allows us to assess the applicability of expansions around vanishing density. By using different freeze-out scenarios in heavy-ion collisions, we translate these results into baryon number fluctuations as a function of collision energy. We show that a non-monotonic energy dependence of baryon number fluctuations can arise in the non-critical crossover region of the phase diagram. Our results compare well with recent experimental measurements of the kurtosis and the sixth-order cumulant of the net-proton distribution from the STAR collaboration. They indicate that the experimentally observed non-monotonic energy dependence of fourth-order net-proton fluctuations is highly non-trivial. It could be an experimental signature of an increasingly sharp chiral crossover and may indicate a QCD critical point. The physics implications and necessary upgrades of our analysis are discussed in detail.