Do you want to publish a course? Click here

Moving mesh simulations of star forming cores in magneto-gravo-turbulence

202   0   0.0 ( 0 )
 Added by Philip Mocz
 Publication date 2017
  fields Physics
and research's language is English
 Authors Philip Mocz




Ask ChatGPT about the research

Star formation in our Galaxy occurs in molecular clouds that are self-gravitating, highly turbulent, and magnetized. We study the conditions under which cloud cores inherit large-scale magnetic field morphologies and how the field is governed by cloud turbulence. We present four moving-mesh simulations of supersonic, turbulent, isothermal, self-gravitating gas with a range of magnetic mean-field strengths characterized by the Alfvenic Mach number $mathcal{M}_{{rm A}, 0}$, resolving pre-stellar core formation from parsec to a few AU scales. In our simulations with the turbulent kinetic energy density dominating over magnetic pressure ($mathcal{M}_{{rm A}, 0}>1$), we find that the collapse is approximately isotropic with $Bproptorho^{2/3}$, core properties are similar regardless of initial mean-field strength, and the field direction on $100$ AU scales is uncorrelated with the mean field. However, in the case of a dominant large-scale magnetic field ($mathcal{M}_{{rm A}, 0}=0.35$), the collapse is anisotropic with $Bproptorho^{1/2}$. This transition at $mathcal{M}_{{rm A}, 0}sim1$ is not expected to be sharp, but clearly signifies two different paths for magnetic field evolution in star formation. Based on observations of different star forming regions, we conclude that star formation in the interstellar medium may occur in both regimes. Magnetic field correlation with the mean-field extends to smaller scales as $mathcal{M}_{{rm A}, 0}$ decreases, making future ALMA observations useful for constraining $mathcal{M}_{{rm A}, 0}$ of the interstellar medium.

rate research

Read More

176 - N. Lo , B. Wiles , M. P. Redman 2015
We present molecular line imaging observations of three massive molecular outflow sources, G333.6-0.2, G333.1-0.4, and G332.8-0.5, all of which also show evidence for infall, within the G333 giant molecular cloud (GMC). All three are within a beam size (36 arcseconds) of IRAS sources, 1.2-mm dust clumps, various masing species and radio continuum-detected HII regions and hence are associated with high-mass star formation. We present the molecular line data and derive the physical properties of the outflows including the mass, kinematics, and energetics and discuss the inferred characteristics of their driving sources. Outflow masses are of 10 to 40 solar masses in each lobe, with core masses of order 10^3 solar masses. outflow size scales are a few tenth of a parsec, timescales are of several x10^4 years, mass loss rates a few x10^-4 solar masses/year. We also find the cores are turbulent and highly supersonic.
Magnetic and energetic properties are presented for 17 dense cores within a few hundred pc of the Sun. Their plane-of-sky field strengths are estimated from the dispersion of polarization directions, following Davis, Chandrasekhar and Fermi (DCF). Their ratio of mass to magnetic critical mass is 0.5-3, indicating nearly critical field strengths. The field strength B_pos is correlated with column density N as B_pos~N^p, where p=1.05+-0.08, and with density n as B_pos~n^q, where q=0.66+-0.05. These magnetic properties are consistent with those derived from Zeeman studies (Crutcher et al. 2010), with less scatter. Relations between virial mass M_V, magnetic critical mass M_B, and Alfven amplitude sigma_B/B match the observed range of M/M_B for cores observed to be nearly virial, with M/M_V=0.5-2, with moderate Alfven amplitudes, and with sigma_B/B=0.1-0.4. The B-N and B-n correlations in the DCF and Zeeman samples can be explained when such bound, Alfvenic, and nearly-critical cores have central concentration and spheroidal shape. For these properties, B~N because M/M_B is nearly constant compared to the range of N, and B~n^(2/3) because M^(1/3) is nearly constant compared to the range of n^(2/3). The observed core fields which follow B~n^(2/3) need not be much weaker than gravity, in contrast to core fields which follow B~n^(2/3) due to spherical contraction at constant mass (Mestel 1966). Instead, the nearly critical values of M/M_B suggest that the observed core fields are nearly as strong as possible, among values which allow gravitational contraction.
Most stars in the Galaxy, including the Sun, were born in high-mass star-forming regions. It is hence important to study the chemical processes in these regions to better understand the chemical heritage of both the Solar System and most stellar systems in the Galaxy. The molecular ion HCNH+ is thought to be a crucial species in ion-neutral astrochemical reactions, but so far it has been detected only in a handful of star-forming regions, and hence its chemistry is poorly known. We have observed with the IRAM-30m Telescope 26 high-mass star-forming cores in different evolutionary stages in the J=3-2 rotational transition of HCNH+. We report the detection of HCNH+ in 16 out of 26 targets. This represents the largest sample of sources detected in this molecular ion so far. The fractional abundances of HCNH+, [HCNH+], w.r.t. H2, are in the range 0.9 - 14 X $10^{-11}$, and the highest values are found towards cold starless cores. The abundance ratios [HCNH+]/[HCN] and [HCNH+]/[HCO+] are both < 0.01 for all objects except for four starless cores, for which they are well above this threshold. These sources have the lowest gas temperature in the sample. We run two chemical models, a cold one and a warm one, which attempt to match as much as possible the average physical properties of the cold(er) starless cores and of the warm(er) targets. The reactions occurring in the latter case are investigated in this work for the first time. Our predictions indicate that in the warm model HCNH+ is mainly produced by reactions with HCN and HCO+, while in the cold one the main progenitor species of HCNH+ are HCN+ and HNC+. The results indicate that the chemistry of HCNH+ is different in cold/early and warm/evolved cores, and the abundance ratios [HCNH+]/[HCN] and [HCNH+]/[HCO+] is a useful astrochemical tool to discriminate between different evolutionary phases in the process of star formation.
227 - Philip Mocz 2018
Supersonic isothermal turbulence establishes a network of transient dense shocks that sweep up material and have a density profile described by balance between ram pressure of the background fluid versus the magnetic and gas pressure gradient behind the shock. These rare, densest regions of a turbulent environment can become Jeans unstable and collapse to form pre-stellar cores. Using numerical simulations of magneto-gravo-turbulence, we describe the structural properties of dense shocks, which are the seeds of gravitational collapse, as a function of magnetic field strength. In the regime of a weak magnetic field, the collapse is isotropic. Strong magnetic field strengths lead to significant anisotropy in the shocked distribution and collapse occurs preferentially parallel to the field lines. Our work provides insight into analyzing the magnetic field topology and density structures of young protostellar collapse, which the theory presented here predicts are associated with large-scale strong shocks that persist for at least a free-fall time.
Two competing models, gravitational instability-driven transport and stellar feedback, have been proposed to interpret the high velocity dispersions observed in high-redshift galaxies. We study the major mechanisms to drive the turbulence in star-forming galaxies using a sample of galaxies from the xCOLD GASS survey, selected based on their star-formation rate (SFR) and gas fraction to be in the regime that can best distinguish between the proposed models. We perform Wide Field Spectrograph (WiFeS) integral field spectroscopic (IFS) observations to measure the intrinsic gas velocity dispersions, circular velocities and orbital periods in these galaxies. Comparing the relation between the SFR, velocity dispersion, and gas fraction with predictions of these two theoretical models, we find that our results are most consistent with a model that includes both transport and feedback as drivers of turbulence in the interstellar medium. By contrast, a model where stellar feedback alone drives turbulence under-predicts the observed velocity dispersion in our galaxies, and does not reproduce the observed trend with gas fraction. These observations therefore support the idea that gravitational instability makes a substantial contribution to turbulence in high redshift and high SFR galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا