No Arabic abstract
Most stars in the Galaxy, including the Sun, were born in high-mass star-forming regions. It is hence important to study the chemical processes in these regions to better understand the chemical heritage of both the Solar System and most stellar systems in the Galaxy. The molecular ion HCNH+ is thought to be a crucial species in ion-neutral astrochemical reactions, but so far it has been detected only in a handful of star-forming regions, and hence its chemistry is poorly known. We have observed with the IRAM-30m Telescope 26 high-mass star-forming cores in different evolutionary stages in the J=3-2 rotational transition of HCNH+. We report the detection of HCNH+ in 16 out of 26 targets. This represents the largest sample of sources detected in this molecular ion so far. The fractional abundances of HCNH+, [HCNH+], w.r.t. H2, are in the range 0.9 - 14 X $10^{-11}$, and the highest values are found towards cold starless cores. The abundance ratios [HCNH+]/[HCN] and [HCNH+]/[HCO+] are both < 0.01 for all objects except for four starless cores, for which they are well above this threshold. These sources have the lowest gas temperature in the sample. We run two chemical models, a cold one and a warm one, which attempt to match as much as possible the average physical properties of the cold(er) starless cores and of the warm(er) targets. The reactions occurring in the latter case are investigated in this work for the first time. Our predictions indicate that in the warm model HCNH+ is mainly produced by reactions with HCN and HCO+, while in the cold one the main progenitor species of HCNH+ are HCN+ and HNC+. The results indicate that the chemistry of HCNH+ is different in cold/early and warm/evolved cores, and the abundance ratios [HCNH+]/[HCN] and [HCNH+]/[HCO+] is a useful astrochemical tool to discriminate between different evolutionary phases in the process of star formation.
Chemical models predict that the deuterated fraction (the column density ratio between a molecule containing D and its counterpart containing H) of N2H+, Dfrac(N2H+), is high in massive pre-protostellar cores and rapidly drops of an order of magnitude after the protostar birth, while that of HNC, Dfrac(HNC), remains constant for much longer. We tested these predictions by deriving Dfrac(HNC) in 22 high-mass star forming cores divided in three different evolutionary stages, from high-mass starless core candidates (HMSCs, 8) to high-mass protostellar objects (HMPOs, 7) to Ultracompact HII regions (UCHIIs, 7). For all of them, Dfrac (N2H+) was already determined through IRAM-30m Telescope observations, which confirmed the theoretical rapid decrease of Dfrac(N2H+) after protostar birth (Fontani et al. 2011). Therefore our comparative study is not affected by biases introduced by the source selection. We have found average Dfrac(HNC) of 0.012, 0.009 and 0.008 in HMSCs, HMPOs and UCHIIs, respectively, with no statistically significant differences among the three evolutionary groups. These findings confirm the predictions of the chemical models, and indicate that large values of Dfrac(N2H+) are more suitable than large values of Dfrac(HNC) to identify cores on the verge of forming high-mass stars, likewise what found in the low-mass regime.
Three bright molecular line sources in G333 have recently been shown to exhibit signatures of infall. We describe a molecular line radiative transfer modelling process which is required to extract the infall signature from Mopra and Nanten2 data. The observed line profiles differ greatly between individual sources but are reproduced well by variations upon a common unified model where the outflow viewing angle is the most significant difference between the sources. The models and data together suggest that the observed properties of the high-mass star-forming regions such as infall, turbulence, and mass are consistent with scaled-
(Abridged) We present a large sample of o-H$_2$D$^+$ observations in high-mass star-forming regions and discuss possible empirical correlations with relevant physical quantities to assess its role as a chronometer of star-forming regions through different evolutionary stages. APEX observations of the ground-state transition of o-H$_2$D$^+$ were analysed in a sample of massive clumps selected from ATLASGAL at different evolutionary stages. Column densities and beam-averaged abundances of o-H$_2$D$^+$ with respect to H$_2$, $X$(o-H$_2$D$^+$), were obtained by modelling the spectra under the assumption of local thermodynamic equilibrium. We detect 16 sources in o-H$_2$D$^+$ and find clear correlations between $X$(o-H$_2$D$^+$) and the clump bolometric luminosity and the dust temperature, while only a mild correlation is found with the CO-depletion factor. In addition, we see a clear correlation with the luminosity-to-mass ratio, which is known to trace the evolution of the star formation process. This would indicate that the deuterated forms of H$_3^+$ are more abundant in the early stages of the star formation process and that deuteration is influenced by the time evolution of the clumps. In this respect, our findings would suggest that the $X$(o-H$_2$D$^+$) abundance is mainly affected by the thermal changes rather than density changes in the gas. We have employed these findings together with observations of H$^{13}$CO$^+$, DCO$^+$, and C$^{17}$O to provide an estimate of the cosmic-ray ionisation rate in a sub-sample of eight clumps based on recent analytical work. Our study presents the largest sample of o-H$_2$D$^+$ in star-forming regions to date. The results confirm that the deuteration process is strongly affected by temperature and suggests that o-H$_2$D$^+$ can be considered a reliable chemical clock during the star formation processes, as proved by its strong temporal dependence.
This paper reviews the first results of observations of H2O line emission with Herschel-HIFI towards high-mass star-forming regions, obtained within the WISH guaranteed time program. The data reveal three kinds of gas-phase H2O: `cloud water in cold tenuous foreground clouds, `envelope water in dense protostellar envelopes, and `outflow water in protostellar outflows. The low H2O abundance (1e-10 -- 1e-9) in foreground clouds and protostellar envelopes is due to rapid photodissociation and freeze-out on dust grains, respectively. The outflows show higher H2O abundances (1e-7 -- 1e-6) due to grain mantle evaporation and (probably) neutral-neutral reactions.
The present study aims at characterizing the massive star forming region G35.20N, which is found associated with at least one massive outflow and contains multiple dense cores, one of them recently found associated with a Keplerian rotating disk. We used ALMA to observe the G35.20N region in the continuum and line emission at 350 GHz. The observed frequency range covers tracers of dense gas (e.g. H13CO+, C17O), molecular outflows (e.g. SiO), and hot cores (e.g. CH3CN, CH3OH). The ALMA 870 um continuum emission map reveals an elongated dust structure (0.15 pc long and 0.013 pc wide) perpendicular to the large-scale molecular outflow detected in the region, and fragmented into a number of cores with masses 1-10 Msun and sizes 1600 AU. The cores appear regularly spaced with a separation of 0.023 pc. The emission of dense gas tracers such as H13CO+ or C17O is extended and coincident with the dust elongated structure. The three strongest dust cores show emission of complex organic molecules characteristic of hot cores, with temperatures around 200 K, and relative abundances 0.2-2x10^(-8) for CH3CN and 0.6-5x10^(-6) for CH3OH. The two cores with highest mass (cores A and B) show coherent velocity fields, with gradients almost aligned with the dust elongated structure. Those velocity gradients are consistent with Keplerian disks rotating about central masses of 4-18 Msun. Perpendicular to the velocity gradients we have identified a large-scale precessing jet/outflow associated with core B, and hints of an east-west jet/outflow associated with core A. The elongated dust structure in G35.20N is fragmented into a number of dense cores that may form massive stars. Based on the velocity field of the dense gas, the orientation of the magnetic field, and the regularly spaced fragmentation, we interpret this elongated structure as the densest part of a 1D filament fragmenting and forming massive stars.