Do you want to publish a course? Click here

Polarized disk emission from Herbig Ae/Be stars observed using Gemini Planet Imager: HD 144432, HD 150193, HD 163296, and HD 169142

327   0   0.0 ( 0 )
 Added by John D. Monnier
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In order to look for signs of on-going planet formation in young disks, we carried out the first J-band polarized emission imaging of the Herbig Ae/Be stars HD 150193, HD 163296, and HD 169142 using the Gemini Planet Imager (GPI), along with new H band observations of HD 144432. We confirm the complex double ring structure for the nearly face-on system HD 169142 first seen in H-band, finding the outer ring to be substantially redder than the inner one in polarized intensity. Using radiative transfer modeling, we developed a physical model that explains the full spectral energy distribution (SED) and J- and H-band surface brightness profiles, suggesting that the differential color of the two rings could come from reddened starlight traversing the inner wall and may not require differences in grain properties. In addition, we clearly detect an elongated, off-center ring in HD 163296 (MWC 275), locating the scattering surface to be 18 AU above the midplane at a radial distance of 77 AU, co-spatial with a ring seen at 1.3mm by ALMA linked to the CO snow line. Lastly, we report a weak tentative detection of scattered light for HD 150193 (MWC 863) and a non-detection for HD 144432; the stellar companion known for each of these targets has likely disrupted the material in the outer disk of the primary star. For HD 163296 and HD 169142, the prominent outer rings we detect could be evidence for giant planet formation in the outer disk or a manifestation of large-scale dust growth processes possibly related to snow-line chemistry.



rate research

Read More

The physical processes occurring within the inner few astronomical units of proto-planetary disks surrounding Herbig Ae stars are crucial to setting the environment in which the outer planet-forming disk evolves and put critical constraints on the processes of accretion and planet migration. We present the most complete published sample of high angular resolution H- and K-band observations of the stars HD 163296 and HD 190073, including 30 previously unpublished nights of observations of the former and 45 nights of the latter with the CHARA long-baseline interferometer, in addition to archival VLTI data. We confirm previous observations suggesting significant near-infrared emission originates within the putative dust evaporation front of HD 163296 and show this is the case for HD 190073 as well. The H- and K-band sizes are the same within $(3 pm 3)%$ for HD 163296 and within $(6 pm 10)%$ for HD 190073. The radial surface brightness profiles for both disks are remarkably Gaussian-like with little or no sign of the sharp edge expected for a dust evaporation front. Coupled with spectral energy distribution analysis, our direct measurements of the stellar flux component at H and K bands suggest that HD 190073 is much younger (<400 kyr) and more massive (~5.6 M$_odot$) than previously thought, mainly as a consequence of the new Gaia distance (891 pc).
Infrared photometry and spectroscopy covering a time span of a quarter century are presented for HD 31648 (MWC 480) and HD 163296 (MWC 275). Both are isolated Herbig Ae stars that exhibit signs of active accretion, including driving bipolar flows with embedded Herbig-Haro (HH) objects. HD 163296 was found to be relatively quiescent photometrically in its inner disk region, with the exception of a major increase in emitted flux in a broad wavelength region centered near 3 microns in 2002. In contrast, HD 31648 has exhibited sporadic changes in the entire 3-13 micron region throughout this span of time. In both stars the changes in the 1-5 micron flux indicate structural changes in the region of the disk near the dust sublimation zone, possibly causing its distance from the star to vary with time. Repeated thermal cycling through this region will result in the preferential survival of large grains, and an increase in the degree of crystallinity. The variability observed in these objects has important consequences for the interpretation of other types of observations. For example, source variability will compromise models based on interferometry measurements unless the interferometry observations are accompanied by nearly-simultaneous photometric data.
The Herbig Ae star HD 169142 is known to have a gaseous disk with a large inner hole, and also a photometrically variable inner dust component in the sub-au region. Following up our previous analysis, we further studied the temporal evolution of inner dust around HD 169142, which may provide information on the evolution from late-stage protoplanetary disks to debris disks. We used near-infrared interferometric observations obtained with VLTI/PIONIER to constrain the dust distribution at three epochs spanning six years. We also studied the photometric variability of HD 169142 using our optical-infrared observations and archival data. Our results indicate that a dust ring at ~0.3 au formed at some time between 2013 and 2018, and then faded (but did not completely disappear) by 2019. The short-term variability resembles that observed in extreme debris disks, and is likely related to short-lived dust of secondary origin, though variable shadowing from the inner ring could be an alternative interpretation. If confirmed, this is the first direct detection of secondary dust production inside a protoplanetary disk.
We present new near-infrared Gemini Planet Imager (GPI) spectroscopy of HD 206893 B, a substellar companion orbiting within the debris disk of its F5V star. The $J$, $H$, $K1$, and $K2$ spectra from GPI demonstrate the extraordinarily red colors of the object, confirming it as the reddest substellar object observed to date. The significant flux increase throughout the infrared presents a challenging atmosphere to model with existing grids. Best-fit values vary from 1200 K to 1800 K for effective temperature and from 3.0 to 5.0 for log($g$), depending on which individual wavelength band is fit and which model suite is applied. The extreme redness of the companion can be partially reconciled by invoking a high-altitude layer of sub-micron dust particles, similar to dereddening approaches applied to the peculiar red field L-dwarf population. However, reconciling the HD 206893 B spectra with even those of the reddest low-gravity L-dwarf spectra still requires the contribution of additional atmospheric dust, potentially due to the debris disk environment in which the companion resides. Orbit fitting from four years of astrometric monitoring is consistent with a $sim$30-year period, orbital inclination of 147$^{circ}$, and semimajor axis of 10 au, well within the estimated disk inner radius of $sim$50 au. As one of very few substellar companions imaged interior to a circumstellar disk, the properties of this system offer important dynamical constraints on companion-disk interaction and provide a benchmark for substellar and planetary atmospheric study.
We present new $H$-band scattered light images of the HD 32297 edge-on debris disk obtained with the Gemini Planet Imager (GPI). The disk is detected in total and polarized intensity down to a projected angular separation of 0.15, or 20au. On the other hand, the large scale swept-back halo remains undetected, likely a consequence of its markedly blue color relative to the parent body belt. We analyze the curvature of the disk spine and estimate a radius of $approx$100au for the parent body belt, smaller than past scattered light studies but consistent with thermal emission maps of the system. We employ three different flux-preserving post-processing methods to suppress the residual starlight and evaluate the surface brightness and polarization profile along the disk spine. Unlike past studies of the system, our high fidelity images reveal the disk to be highly symmetric and devoid of morphological and surface brightness perturbations. We find the dust scattering properties of the system to be consistent with those observed in other debris disks, with the exception of HR 4796. Finally, we find no direct evidence for the presence of a planetary-mass object in the system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا