Do you want to publish a course? Click here

Detection of Slang Words in e-Data using semi-Supervised Learning

53   0   0.0 ( 0 )
 Added by Alok Pal
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

The proposed algorithmic approach deals with finding the sense of a word in an electronic data. Now a day,in different communication mediums like internet, mobile services etc. people use few words, which are slang in nature. This approach detects those abusive words using supervised learning procedure. But in the real life scenario, the slang words are not used in complete word forms always. Most of the times, those words are used in different abbreviated forms like sounds alike forms, taboo morphemes etc. This proposed approach can detect those abbreviated forms also using semi supervised learning procedure. Using the synset and concept analysis of the text, the probability of a suspicious word to be a slang word is also evaluated.



rate research

Read More

Building user trust in dialogue agents requires smooth and consistent dialogue exchanges. However, agents can easily lose conversational context and generate irrelevant utterances. These situations are called dialogue breakdown, where agent utterances prevent users from continuing the conversation. Building systems to detect dialogue breakdown allows agents to recover appropriately or avoid breakdown entirely. In this paper we investigate the use of semi-supervised learning methods to improve dialogue breakdown detection, including continued pre-training on the Reddit dataset and a manifold-based data augmentation method. We demonstrate the effectiveness of these methods on the Dialogue Breakdown Detection Challenge (DBDC) English shared task. Our submissions to the 2020 DBDC5 shared task place first, beating baselines and other submissions by over 12% accuracy. In ablations on DBDC4 data from 2019, our semi-supervised learning methods improve the performance of a baseline BERT model by 2% accuracy. These methods are applicable generally to any dialogue task and provide a simple way to improve model performance.
As online tracking continues to grow, existing anti-tracking and fingerprinting detection techniques that require significant manual input must be augmented. Heuristic approaches to fingerprinting detection are precise but must be carefully curated. Supervised machine learning techniques proposed for detecting tracking require manually generated label-sets. Seeking to overcome these challenges, we present a semi-supervised machine learning approach for detecting fingerprinting scripts. Our approach is based on the core insight that fingerprinting scripts have similar patterns of API access when generating their fingerprints, even though their access patterns may not match exactly. Using this insight, we group scripts by their JavaScript (JS) execution traces and apply a semi-supervised approach to detect new fingerprinting scripts. We detail our methodology and demonstrate its ability to identify the majority of scripts ($geqslant$94.9%) identified by existing heuristic techniques. We also show that the approach expands beyond detecting known scripts by surfacing candidate scripts that are likely to include fingerprinting. Through an analysis of these candidate scripts we discovered fingerprinting scripts that were missed by heuristics and for which there are no heuristics. In particular, we identified over one hundred device-class fingerprinting scripts present on hundreds of domains. To the best of our knowledge, this is the first time device-class fingerprinting has been measured in the wild. These successes illustrate the power of a sparse vector representation and semi-supervised learning to complement and extend existing tracking detection techniques.
Supervised models of NLP rely on large collections of text which closely resemble the intended testing setting. Unfortunately matching text is often not available in sufficient quantity, and moreover, within any domain of text, data is often highly heterogenous. In this paper we propose a method to distill the important domain signal as part of a multi-domain learning system, using a latent variable model in which parts of a neural model are stochastically gated based on the inferred domain. We compare the use of discrete versus continuous latent variables, operating in a domain-supervised or a domain semi-supervised setting, where the domain is known only for a subset of training inputs. We show that our model leads to substantial performance improvements over competitive benchmark domain adaptation methods, including methods using adversarial learning.
361 - Zhenyu Wang , Yali Li , Ye Guo 2021
In this paper, we delve into semi-supervised object detection where unlabeled images are leveraged to break through the upper bound of fully-supervised object detection models. Previous semi-supervised methods based on pseudo labels are severely degenerated by noise and prone to overfit to noisy labels, thus are deficient in learning different unlabeled knowledge well. To address this issue, we propose a data-uncertainty guided multi-phase learning method for semi-supervised object detection. We comprehensively consider divergent types of unlabeled images according to their difficulty levels, utilize them in different phases and ensemble models from different phases together to generate ultimate results. Image uncertainty guided easy data selection and region uncertainty guided RoI Re-weighting are involved in multi-phase learning and enable the detector to concentrate on more certain knowledge. Through extensive experiments on PASCAL VOC and MS COCO, we demonstrate that our method behaves extraordinarily compared to baseline approaches and outperforms them by a large margin, more than 3% on VOC and 2% on COCO.
Word translation is an integral part of language translation. In machine translation, each language is considered a domain with its own word embedding. The alignment between word embeddings allows linking semantically equivalent words in multilingual contexts. Moreover, it offers a way to infer cross-lingual meaning for words without a direct translation. Current methods for word embedding alignment are either supervised, i.e. they require known word pairs, or learn a cross-domain transformation on fixed embeddings in an unsupervised way. Here we propose an end-to-end approach for word embedding alignment that does not require known word pairs. Our method, termed Word Alignment through MMD (WAM), learns embeddings that are aligned during sentence translation training using a localized Maximum Mean Discrepancy (MMD) constraint between the embeddings. We show that our method not only out-performs unsupervised methods, but also supervised methods that train on known word translations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا