Do you want to publish a course? Click here

Characteristics of events with metric-to-decahectometric type II radio bursts associated with CMEs and flares in relation to SEP events

78   0   0.0 ( 0 )
 Added by Prakash O
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

A gradual solar energetic particle (SEP) event is thought to happen when particles are accelerated at a shock due to a fast coronal mass ejection (CME). To quantify what kind of solar eruptions can result in such SEP events, we have conducted detailed investigations on the characteristics of CMEs, solar flares and m-to-DH wavelength type II radio bursts (herein after m-to-DH type II bursts) for SEP-associated and non-SEP-associated events, observed during the period of 1997-2012. Interestingly, 65% of m-to-DH type II bursts associated with CMEs and flares produced SEP events. The SEP-associated CMEs have higher sky-plane mean speed, projection corrected speed, and sky-plane peak speed than those of non-SEP-associated CMEs respectively by 30%, 39%, and 25%, even though the two sets of CMEs achieved their sky-plane peak speeds at nearly similar heights within LASCO field of view. We found Pearsons correlation coefficients between the speeds of CMEs speeds and logarithmic peak intensity of SEP events are cc = 0.62 and cc = 0.58, respectively. We also found that the SEP-associated CMEs are on average of three times more decelerated (-21.52 m/s2) than the non-SEP-associated CMEs (-5.63 m/s2). The SEP-associated m type II bursts have higher frequency drift rate and associated shock speed than those of the non-SEP-associated events by 70% and 25% respectively. The average formation heights of m and DH type II radio bursts for SEP-associated events are lower than for non-SEP-associated events. 93% of SEP-associated events originate from the western hemisphere and 65% of SEP-associated events are associated with interacting CMEs. The obtained results indicate that, at least for the set of CMEs associated with m-to-DH type II bursts, SEP-associated CMEs are more energetic than those not associated with SEPs, thus suggesting that they are effective particle accelerators.



rate research

Read More

We have statistically analyzed a set of 115 low frequency (Deca- Hectometer wavelengths range) type II and type III bursts associated with major Solar Energetic Particle (SEP: Ep > 10 MeV) events and their solar causes such as solar flares and coronal mass ejections (CMEs) observed from 1997 to 2014. We classified them into two sets of events based on the duration of the associated solar flares:75 impulsive flares (duration < 60 min) and 40 gradual flares (duration > 60 min).The impulsive flare-associated SEP events (Rt = 989.23 min: 2.86 days) are short lived and they quickly reach their peak intensity (shorter rise time) when compared with gradual flares associated events (Rt =1275.45 min: 3.34 days). We found a good correlation between the logarithmic peak intensity of all SEPs and properties of CMEs (space speed: cc = 0.52, SEcc = 0.083), and solar flares (log integrated flux: cc = 0.44, SEcc = 0.083). This particular result gives no clear cut distinction between flare-related and CME-related SEP events for this set of major SEP events. We derived the peak intensity, integrated intensity, duration and slope of these bursts from the radio dynamic spectra observed by Wind/WAVES. Most of the properties (peak intensity, integrated intensity and starting frequency) of DH type II bursts associated with impulsive and gradual flare events are found to be similar in magnitudes. In addition, we also found a significant correlation between the properties of SEPs and key parameters of DH type III bursts. This result shows a closer association of peak intensity of the SEPs with the properties of DH type III radio bursts than with the properties DH type II radio bursts, at least for this set of 115 major SEP events.
The issue of the influence of coronal holes (CHs) on coronal mass ejections (CMEs) in causing solar energetic particle (SEP) events is revisited. It is a continuation and extension of our previous work (Shen et al., 2006), in which no evident effect of CHs on CMEs in generating SEPs were found by statistically investigating 56 CME events. This result is consistent with the conclusion obtained by Kahler in 2004. In this paper, we extrapolate the coronal magnetic field, define CHs as the regions consisting of only open magnetic field lines and perform a similar analysis on this issue for totally 76 events by extending the study interval to the end of 2008. Three key parameters, CH proximity, CH area and CH relative position, are involved in the analysis. The new result confirms the previous conclusion that CHs did not show any evident effect on CMEs in causing SEP events.
We analyze radio bursts observed in events with interacting/non-interacting CMEs that produced major SEPs (Ip $>$ 10 MeV) fromApril 1997 to December 2014.We compare properties of meter (m), deca-hectometer (DH) type II as well as DH type III bursts, and time lags for interacting-CME-associated (IC) events and non-interacting-CME-associated (NIC) events. About 70% of radio emissions were observed in events of both types from meters to kilometers. We found high correlations between the drift rates and mid-frequencies of type II radio bursts calculated as the mean geometric between their starting and ending frequencies for both NIC and IC-associated events (Correlation coefficient textit{R}$^{2}$ = 0.98, power-law index $varepsilon$ = 1.68 $pm $ 0.16 and textit{R}$^{2}$ = 0.93, $varepsilon$ = 1.64 $pm $ 0.19 respectively).We also found a correlation between the frequency drift rates of DH type II bursts and space speeds of CMEs in NIC-associated events. The absence of such correlation for IC-associated events confirms that the shock speeds changed in CME--CME interactions. For the events with western source locations, the mean peak intensity of SEPs in IC-associated events is four times larger than that in NIC-associated SEP events. From the mean time lags between the start times of SEP events and the start of m, DH type II, and DH type III radio bursts, we inferred that particle enhancements in NIC-associated SEP events occurred earlier than in IC-associated SEP events. The difference between NIC events and IC events in the mean values of parameters of type II and type III bursts is statistically insignificant.
We show examples of excitation of coronal waves by flare-related abrupt eruptions of magnetic rope structures. The waves presumably rapidly steepened into shocks and freely propagated afterwards like decelerating blast waves that showed up as Moreton waves and EUV waves. We propose a simple quantitative description for such shock waves to reconcile their observed propagation with drift rates of metric type II bursts and kinematics of leading edges of coronal mass ejections (CMEs). Taking account of different plasma density falloffs for propagation of a wave up and along the solar surface, we demonstrate a close correspondence between drift rates of type II bursts and speeds of EUV waves, Moreton waves, and CMEs observed in a few known events.
Among the eruptive activity phenomena observed on the Sun, the most technology threatening ones are flares with associated coronal mass ejections (CMEs) and solar energetic particles (SEPs). Flares with associated CMEs and SEPs are produced by magnetohydrodynamical processes in magnetically active regions (ARs) on the Sun. However, these ARs do not only produce flares with associated CMEs and SEPs, they also lead to flares and CMEs, which are not associated with any other event. In an attempt to distinguish flares with associated CMEs and SEPs from flares and CMEs, which are unassociated with any other event, we investigate the performances of two machine learning algorithms. To achieve this objective, we employ support vector machines (SVMs) and multilayer perceptrons (MLPs) using data from the Space Weather Database of Notification, Knowledge, Information (DONKI) of NASA Space Weather Center, {it the Geostationary Operational Environmental Satellite} ({it GOES}), and the Space-Weather Heliospheric and Magnetic Imager Active Region Patches (SHARPs). We show that True Skill Statistics (TSS) and Heidke Skill Scores (HSS) calculated for SVMs are slightly better than those from the MLPs. We also show that the forecasting time frame of 96 hours provides the best results in predicting if a flare will be associated with CMEs and SEPs (TSS=0.92$pm$0.09 and HSS=0.92$pm$0.08). Additionally, we obtain the maximum TSS and HSS values of 0.91$pm$0.06 for predicting that a flare will not be associated with CMEs and SEPs for the 36 hour forecast window, while the 108 hour forecast window give the maximum TSS and HSS values for predicting CMEs will not be accompanying any events (TSS=HSS=0.98$pm$0.02).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا