Do you want to publish a course? Click here

Using Machine Learning Methods to Forecast If Solar Flares Will Be Associated with CMEs and SEPs

60   0   0.0 ( 0 )
 Added by Fadil Inceoglu
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Among the eruptive activity phenomena observed on the Sun, the most technology threatening ones are flares with associated coronal mass ejections (CMEs) and solar energetic particles (SEPs). Flares with associated CMEs and SEPs are produced by magnetohydrodynamical processes in magnetically active regions (ARs) on the Sun. However, these ARs do not only produce flares with associated CMEs and SEPs, they also lead to flares and CMEs, which are not associated with any other event. In an attempt to distinguish flares with associated CMEs and SEPs from flares and CMEs, which are unassociated with any other event, we investigate the performances of two machine learning algorithms. To achieve this objective, we employ support vector machines (SVMs) and multilayer perceptrons (MLPs) using data from the Space Weather Database of Notification, Knowledge, Information (DONKI) of NASA Space Weather Center, {it the Geostationary Operational Environmental Satellite} ({it GOES}), and the Space-Weather Heliospheric and Magnetic Imager Active Region Patches (SHARPs). We show that True Skill Statistics (TSS) and Heidke Skill Scores (HSS) calculated for SVMs are slightly better than those from the MLPs. We also show that the forecasting time frame of 96 hours provides the best results in predicting if a flare will be associated with CMEs and SEPs (TSS=0.92$pm$0.09 and HSS=0.92$pm$0.08). Additionally, we obtain the maximum TSS and HSS values of 0.91$pm$0.06 for predicting that a flare will not be associated with CMEs and SEPs for the 36 hour forecast window, while the 108 hour forecast window give the maximum TSS and HSS values for predicting CMEs will not be accompanying any events (TSS=HSS=0.98$pm$0.02).



rate research

Read More

We have statistically analyzed a set of 115 low frequency (Deca- Hectometer wavelengths range) type II and type III bursts associated with major Solar Energetic Particle (SEP: Ep > 10 MeV) events and their solar causes such as solar flares and coronal mass ejections (CMEs) observed from 1997 to 2014. We classified them into two sets of events based on the duration of the associated solar flares:75 impulsive flares (duration < 60 min) and 40 gradual flares (duration > 60 min).The impulsive flare-associated SEP events (Rt = 989.23 min: 2.86 days) are short lived and they quickly reach their peak intensity (shorter rise time) when compared with gradual flares associated events (Rt =1275.45 min: 3.34 days). We found a good correlation between the logarithmic peak intensity of all SEPs and properties of CMEs (space speed: cc = 0.52, SEcc = 0.083), and solar flares (log integrated flux: cc = 0.44, SEcc = 0.083). This particular result gives no clear cut distinction between flare-related and CME-related SEP events for this set of major SEP events. We derived the peak intensity, integrated intensity, duration and slope of these bursts from the radio dynamic spectra observed by Wind/WAVES. Most of the properties (peak intensity, integrated intensity and starting frequency) of DH type II bursts associated with impulsive and gradual flare events are found to be similar in magnitudes. In addition, we also found a significant correlation between the properties of SEPs and key parameters of DH type III bursts. This result shows a closer association of peak intensity of the SEPs with the properties of DH type III radio bursts than with the properties DH type II radio bursts, at least for this set of 115 major SEP events.
We analyze radio bursts observed in events with interacting/non-interacting CMEs that produced major SEPs (Ip $>$ 10 MeV) fromApril 1997 to December 2014.We compare properties of meter (m), deca-hectometer (DH) type II as well as DH type III bursts, and time lags for interacting-CME-associated (IC) events and non-interacting-CME-associated (NIC) events. About 70% of radio emissions were observed in events of both types from meters to kilometers. We found high correlations between the drift rates and mid-frequencies of type II radio bursts calculated as the mean geometric between their starting and ending frequencies for both NIC and IC-associated events (Correlation coefficient textit{R}$^{2}$ = 0.98, power-law index $varepsilon$ = 1.68 $pm $ 0.16 and textit{R}$^{2}$ = 0.93, $varepsilon$ = 1.64 $pm $ 0.19 respectively).We also found a correlation between the frequency drift rates of DH type II bursts and space speeds of CMEs in NIC-associated events. The absence of such correlation for IC-associated events confirms that the shock speeds changed in CME--CME interactions. For the events with western source locations, the mean peak intensity of SEPs in IC-associated events is four times larger than that in NIC-associated SEP events. From the mean time lags between the start times of SEP events and the start of m, DH type II, and DH type III radio bursts, we inferred that particle enhancements in NIC-associated SEP events occurred earlier than in IC-associated SEP events. The difference between NIC events and IC events in the mean values of parameters of type II and type III bursts is statistically insignificant.
A gradual solar energetic particle (SEP) event is thought to happen when particles are accelerated at a shock due to a fast coronal mass ejection (CME). To quantify what kind of solar eruptions can result in such SEP events, we have conducted detailed investigations on the characteristics of CMEs, solar flares and m-to-DH wavelength type II radio bursts (herein after m-to-DH type II bursts) for SEP-associated and non-SEP-associated events, observed during the period of 1997-2012. Interestingly, 65% of m-to-DH type II bursts associated with CMEs and flares produced SEP events. The SEP-associated CMEs have higher sky-plane mean speed, projection corrected speed, and sky-plane peak speed than those of non-SEP-associated CMEs respectively by 30%, 39%, and 25%, even though the two sets of CMEs achieved their sky-plane peak speeds at nearly similar heights within LASCO field of view. We found Pearsons correlation coefficients between the speeds of CMEs speeds and logarithmic peak intensity of SEP events are cc = 0.62 and cc = 0.58, respectively. We also found that the SEP-associated CMEs are on average of three times more decelerated (-21.52 m/s2) than the non-SEP-associated CMEs (-5.63 m/s2). The SEP-associated m type II bursts have higher frequency drift rate and associated shock speed than those of the non-SEP-associated events by 70% and 25% respectively. The average formation heights of m and DH type II radio bursts for SEP-associated events are lower than for non-SEP-associated events. 93% of SEP-associated events originate from the western hemisphere and 65% of SEP-associated events are associated with interacting CMEs. The obtained results indicate that, at least for the set of CMEs associated with m-to-DH type II bursts, SEP-associated CMEs are more energetic than those not associated with SEPs, thus suggesting that they are effective particle accelerators.
We take a broad look at the problem of identifying the magnetic solar causes of space weather. With the lackluster performance of extrapolations based upon magnetic field measurements in the photosphere, we identify a region in the near UV part of the spectrum as optimal for studying the development of magnetic free energy over active regions. Using data from SORCE, Hubble Space Telescope, and SKYLAB, along with 1D computations of the near-UV (NUV) spectrum and numerical experiments based on the MURaM radiation-MHD and HanleRT radiative transfer codes, we address multiple challenges. These challenges are best met through a combination of near UV lines of bright ion{Mg}{2}, and lines of ion{Fe}{2} and ion{Fe}{1} (mostly within the $4s-4p$ transition array) which form in the chromosphere up to $2times10^4$ K. Both Hanle and Zeeman effects can in principle be used to derive vector magnetic fields. However, for any given spectral line the $tau=1$ surfaces are generally geometrically corrugated owing to fine structure such as fibrils and spicules. By using multiple spectral lines spanning different optical depths, magnetic fields across nearly-horizontal surfaces can be inferred in regions of low plasma $beta$, from which free energies, magnetic topology and other quantities can be derived. Based upon the recently-reported successful suborbital space measurements of magnetic fields with the CLASP2 instrument, we argue that a modest space-borne telescope will be able to make significant advances in the attempts to predict solar eruptions. Difficulties associated with blended lines are shown to be minor in an Appendix.
We study the influence of the large-scale interplanetary magnetic field configuration on the solar energetic particles (SEPs) as detected at different satellites near Earth and on the correlation of their peak intensities with the parent solar activity. We selected SEP events associated with X and M-class flares at western longitudes, in order to ensure good magnetic connection to Earth. These events were classified into two categories according to the global interplanetary magnetic field (IMF) configuration present during the SEP propagation to 1AU: standard solar wind or interplanetary coronal mass ejections (ICMEs). Our analysis shows that around 20% of all particle events are detected when the spacecraft is immersed in an ICME. The correlation of the peak particle intensity with the projected speed of the SEP-associated coronal mass ejection is similar in the two IMF categories of proton and electron events, $approx 0.6$. The SEP events within ICMEs show stronger correlation between the peak proton intensity and the soft X-ray flux of the associated solar flare, with correlation coefficient $r=,$0.67$pm$0.13, compared to the SEP events propagating in the standard solar wind, $r=,$0.36$pm$0.13. The difference is more pronounced for near-relativistic electrons. The main reason for the different correlation behavior seems to be the larger spread of the flare longitude in the SEP sample detected in the solar wind as compared to SEP events within ICMEs. We discuss to which extent observational bias, different physical processes (particle injection, transport, etc.), and the IMF configuration can influence the relationship between SEPs and coronal activity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا