Do you want to publish a course? Click here

Revealing nonclassicality beyond Gaussian states via a single marginal distribution

122   0   0.0 ( 0 )
 Added by Hyunchul Nha
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

A standard method to obtain information on a quantum state is to measure marginal distributions along many different axes in phase space, which forms a basis of quantum state tomography. We theoretically propose and experimentally demonstrate a general framework to manifest nonclassicality by observing a single marginal distribution only, which provides a novel insight into nonclassicality and a practical applicability to various quantum systems. Our approach maps the 1-dim marginal distribution into a factorized 2-dim distribution by multiplying the measured distribution or the vacuum-state distribution along an orthogonal axis. The resulting fictitious Wigner function becomes unphysical only for a nonclassical state, thus the negativity of the corresponding density operator provides an evidence of nonclassicality. Furthermore, the negativity measured this way yields a lower bound for entanglement potential---a measure of entanglement generated using a nonclassical state with a beam splitter setting that is a prototypical model to produce continuous-variable (CV) entangled states. Our approach detects both Gaussian and non-Gaussian nonclassical states in a reliable and efficient manner. Remarkably, it works regardless of measurement axis for all non-Gaussian states in finite-dimensional Fock space of any size, also extending to infinite-dimensional states of experimental relevance for CV quantum informatics. We experimentally illustrate the power of our criterion for motional states of a trapped ion confirming their nonclassicality in a measurement-axis independent manner. We also address an extension of our approach combined with phase-shift operations, which leads to a stronger test of nonclassicality, i.e. detection of genuine non-Gaussianity under a CV measurement.



rate research

Read More

122 - T. Kiesel , W. Vogel , M. Bellini 2011
We report the experimental reconstruction of a nonclassicality quasiprobability for a single-photon added thermal state. This quantity has significant negativities, which is necessary and sufficient for the nonclassicality of the quantum state. Our method presents several advantages compared to the reconstruction of the P function, since the nonclassicality filters used in this case can regularize the quasiprobabilities as well as their statistical uncertainties. A-priori assumptions about the quantum state are therefore not necessary. We also demonstrate that, in principle, our method is not limited by small quantum efficiencies.
We evaluate a Gaussian distance-type degree of nonclassicality for a single-mode Gaussian state of the quantum radiation field by use of the recently discovered quantum Chernoff bound. The general properties of the quantum Chernoff overlap and its relation to the Uhlmann fidelity are interestingly illustrated by our approach.
We propose a hierachy of nonclassicality criteria in phase space. Our formalism covers the negativity in phase space as a special case and further adresses nonclassicality for quantum states with positive phase-space distributions. Remarkably, it enables us to detect every nonclassical Gaussian state and every finite dimensional state in Fock basis by looking into only three phase-space points. Furthermore, our approach provides an experimentally accessible lower bound for the nonclassicality measure based on trace distance. We also extend our method to detecting genuine quantum non-Gaussianity of a state with a non-negative Wigner function. We finally establish our formalism by employing generalized quasiprobability distributions to demonstrate its power for a practical test using an on-off detector array.
Quantum steering---a strong correlation to be verified even when one party or its measuring device is fully untrusted---not only provides a profound insight into quantum physics but also offers a crucial basis for practical applications. For continuous-variable (CV) systems, Gaussian states among others have been extensively studied, however, mostly confined to Gaussian measurements. While the fulfillment of Gaussian criterion is sufficient to detect CV steering, whether it is also necessary for Gaussian states is a question of fundamental importance in many contexts. This critically questions the validity of characterizations established only under Gaussian measurements like the quantification of steering and the monogamy relations. Here, we introduce a formalism based on local uncertainty relations of non-Gaussian measurements, which is shown to manifest quantum steering of some Gaussian states that Gaussian criterion fails to detect. To this aim, we look into Gaussian states of practical relevance, i.e. two-mode squeezed states under a lossy and an amplifying Gaussian channel. Our finding significantly modifies the characteristics of Gaussian-state steering so far established such as monogamy relations and one-way steering under Gaussian measurements, thus opening a new direction for critical studies beyond Gaussian regime.
In a recent paper [R. Alicki and N. Van Ryn, J. Phys. A: Math. Theor., 41, 062001 (2008)] a test of nonclassicality for a single qubit was proposed. Here, we discuss the class of local realistic theories to which this test applies and present an experimental realization.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا