No Arabic abstract
In April 2016, a community of researchers working in the area of Principles of Data Management (PDM) joined in a workshop at the Dagstuhl Castle in Germany. The workshop was organized jointly by the Executive Committee of the ACM Symposium on Principles of Database Systems (PODS) and the Council of the International Conference on Database Theory (ICDT). The mission of this workshop was to identify and explore some of the most important research directions that have high relevance to society and to Computer Science today, and where the PDM community has the potential to make significant contributions. This report describes the family of research directions that the workshop focused on from three perspectives: potential practical relevance, results already obtained, and research questions that appear surmountable in the short and medium term.
Here we present CaosDB, a Research Data Management System (RDMS) designed to ensure seamless integration of inhomogeneous data sources and repositories of legacy data. Its primary purpose is the management of data from biomedical sciences, both from simulations and experiments during the complete research data lifecycle. An RDMS for this domain faces particular challenges: Research data arise in huge amounts, from a wide variety of sources, and traverse a highly branched path of further processing. To be accepted by its users, an RDMS must be built around workflows of the scientists and practices and thus support changes in workflow and data structure. Nevertheless it should encourage and support the development and observation of standards and furthermore facilitate the automation of data acquisition and processing with specialized software. The storage data model of an RDMS must reflect these complexities with appropriate semantics and ontologies while offering simple methods for finding, retrieving, and understanding relevant data. We show how CaosDB responds to these challenges and give an overview of the CaosDB Server, its data model and its easy-to-learn CaosDB Query Language. We briefly discuss the status of the implementation, how we currently use CaosDB, and how we plan to use and extend it.
Energy costs are quickly rising in large-scale data centers and are soon projected to overtake the cost of hardware. As a result, data center operators have recently started turning into using more energy-friendly hardware. Despite the growing body of research in power management techniques, there has been little work to date on energy efficiency from a data management software perspective. In this paper, we argue that hardware-only approaches are only part of the solution, and that data management software will be key in optimizing for energy efficiency. We discuss the problems arising from growing energy use in data centers and the trends that point to an increasing set of opportunities for software-level optimizations. Using two simple experiments, we illustrate the potential of such optimizations, and, motivated by these examples, we discuss general approaches for reducing energy waste. Lastly, we point out existing places within database systems that are promising for energy-efficiency optimizations and urge the data management systems community to shift focus from performance-oriented research to energy-efficient computing.
Reconfigurable intelligent surfaces (RISs) or intelligent reflecting surfaces (IRSs), are regarded as one of the most promising and revolutionizing techniques for enhancing the spectrum and/or energy efficiency of wireless systems. These devices are capable of reconfiguring the wireless propagation environment by carefully tuning the phase shifts of a large number of low-cost passive reflecting elements. In this article, we aim for answering four fundmental questions: 1) Why do we need RISs? 2) What is an RIS? 3) What are RISs applications? 4) What are the relevant challenges and future research directions? In response, eight promising research directions are pointed out.
Data Lake (DL) is a Big Data analysis solution which ingests raw data in their native format and allows users to process these data upon usage. Data ingestion is not a simple copy and paste of data, it is a complicated and important phase to ensure that ingested data are findable, accessible, interoperable and reusable at all times. Our solution is threefold. Firstly, we propose a metadata model that includes information about external data sources, data ingestion processes, ingested data, dataset veracity and dataset security. Secondly, we present the algorithms that ensure the ingestion phase (data storage and metadata instanciation). Thirdly, we introduce a developed metadata management system whereby users can easily consult different elements stored in DL.
With new emerging technologies, such as satellites and drones, archaeologists collect data over large areas. However, it becomes difficult to process such data in time. Archaeological data also have many different formats (images, texts, sensor data) and can be structured, semi-structured and unstructured. Such variety makes data difficult to collect, store, manage, search and analyze effectively. A few approaches have been proposed, but none of them covers the full data lifecycle nor provides an efficient data management system. Hence, we propose the use of a data lake to provide centralized data stores to host heterogeneous data, as well as tools for data quality checking, cleaning, transformation, and analysis. In this paper, we propose a generic, flexible and complete data lake architecture. Our metadata management system exploits goldMEDAL, which is the most complete metadata model currently available. Finally, we detail the concrete implementation of this architecture dedicated to an archaeological project.