No Arabic abstract
With new emerging technologies, such as satellites and drones, archaeologists collect data over large areas. However, it becomes difficult to process such data in time. Archaeological data also have many different formats (images, texts, sensor data) and can be structured, semi-structured and unstructured. Such variety makes data difficult to collect, store, manage, search and analyze effectively. A few approaches have been proposed, but none of them covers the full data lifecycle nor provides an efficient data management system. Hence, we propose the use of a data lake to provide centralized data stores to host heterogeneous data, as well as tools for data quality checking, cleaning, transformation, and analysis. In this paper, we propose a generic, flexible and complete data lake architecture. Our metadata management system exploits goldMEDAL, which is the most complete metadata model currently available. Finally, we detail the concrete implementation of this architecture dedicated to an archaeological project.
Data Lake (DL) is a Big Data analysis solution which ingests raw data in their native format and allows users to process these data upon usage. Data ingestion is not a simple copy and paste of data, it is a complicated and important phase to ensure that ingested data are findable, accessible, interoperable and reusable at all times. Our solution is threefold. Firstly, we propose a metadata model that includes information about external data sources, data ingestion processes, ingested data, dataset veracity and dataset security. Secondly, we present the algorithms that ensure the ingestion phase (data storage and metadata instanciation). Thirdly, we introduce a developed metadata management system whereby users can easily consult different elements stored in DL.
In 2010, the concept of data lake emerged as an alternative to data warehouses for big data management. Data lakes follow a schema-on-read approach to provide rich and flexible analyses. However, although trendy in both the industry and academia, the concept of data lake is still maturing, and there are still few methodological approaches to data lake design. Thus, we introduce a new approach to design a data lake and propose an extensive metadata system to activate richer features than those usually supported in data lake approaches. We implement our approach in the AUDAL data lake, where we jointly exploit both textual documents and tabular data, in contrast with structured and/or semi-structured data typically processed in data lakes from the literature. Furthermore, we also innovate by leveraging metadata to activate both data retrieval and content analysis, including Text-OLAP and SQL querying. Finally, we show the feasibility of our approach using a real-word use case on the one hand, and a benchmark on the other hand.
Many Big Data applications in business and science require the management and analysis of huge amounts of graph data. Previous approaches for graph analytics such as graph databases and parallel graph processing systems (e.g., Pregel) either lack sufficient scalability or flexibility and expressiveness. We are therefore developing a new end-to-end approach for graph data management and analysis based on the Hadoop ecosystem, called Gradoop (Graph analytics on Hadoop). Gradoop is designed around the so-called Extended Property Graph Data Model (EPGM) supporting semantically rich, schema-free graph data within many distinct graphs. A set of high-level operators is provided for analyzing both single graphs and collections of graphs. Based on these operators, we propose a domain-specific language to define analytical workflows. The Gradoop graph store is currently utilizing HBase for distributed storage of graph data in Hadoop clusters. An initial version of Gradoop has been used to analyze graph data for business intelligence and social network analysis.
We consider the problem of creating a navigation structure that allows a user to most effectively navigate a data lake. We define an organization as a graph that contains nodes representing sets of attributes within a data lake and edges indicating subset relationships among nodes. We present a new probabilistic model of how users interact with an organization and define the likelihood of a user finding a table using the organization. We propose the data lake organization problem as the problem of finding an organization that maximizes the expected probability of discovering tables by navigating an organization. We propose an approximate algorithm for the data lake organization problem. We show the effectiveness of the algorithm on both real data lakes containing data from open data portals and on benchmarks that emulate the observed characteristics of real data lakes. Through a formal user study, we show that navigation can help users discover relevant tables that cannot be found by keyword search. In addition, in our study, 42% of users preferred the use of navigation and 58% preferred keyword search, suggesting these are complementary and both useful modalities for data discovery in data lakes. Our experiments show that data lake organizations take into account the data lake distribution and outperform an existing hand-curated taxonomy and a common baseline organization.
Next Generation Sequencing (NGS) technology has resulted in massive amounts of proteomics and genomics data. This data is of no use if it is not properly analyzed. ETL (Extraction, Transformation, Loading) is an important step in designing data analytics applications. ETL requires proper understanding of features of data. Data format plays a key role in understanding of data, representation of data, space required to store data, data I/O during processing of data, intermediate results of processing, in-memory analysis of data and overall time required to process data. Different data mining and machine learning algorithms require input data in specific types and formats. This paper explores the data formats used by different tools and algorithms and also presents modern data formats that are used on Big Data Platform. It will help researchers and developers in choosing appropriate data format to be used for a particular tool or algorithm.