Do you want to publish a course? Click here

A tale of clusters: No resolvable periodicity in the terrestrial impact cratering record

116   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Rampino & Caldeira (2015) carry out a circular spectral analysis (CSA) of the terrestrial impact cratering record over the past 260 million years (Ma), and suggest a ~26 Ma periodicity of impact events. For some of the impacts in that analysis, new accurate and high-precision (robust; 2SE<2%) 40Ar-39Ar ages have recently been published, resulting in significant age shifts. In a CSA of the updated impact age list, the periodicity is strongly reduced. In a CSA of a list containing only impacts with robust ages, we find no significant periodicity for the last 500 Ma. We show that if we relax the assumption of a fully periodic impact record, assuming it to be a mix of a periodic and a random component instead, we should have found a periodic component if it contributes more than ~80% of the impacts in the last 260 Ma. The difference between our CSA and the one by Rampino & Caldeira (2015) originates in a subset of clustered impacts (i.e., with overlapping ages). The ~26 Ma periodicity seemingly carried by these clusters alone is strongly significant if tested against a random distribution of ages, but this significance disappears if it is tested against a distribution containing (randomly-spaced) clusters. The presence of a few impact age clusters (e.g., from asteroid break-up events) in an otherwise random impact record can thus give rise to false periodicity peaks in a CSA. There is currently no evidence for periodicity in the impact record.



rate research

Read More

260 - Lauri Jetsu 1997
The most significant periodicities in the terrestrial impact crater record are due to the human-signal: the bias of assigning integer values for the crater ages. This bias seems to have eluded the proponents and opponents of real periodicity in the occurrence of these events, as well as the theorists searching for an extraterrestrial explanation for such periodicity. The human-signal should be seriously considered by scientists in astronomy, geology and paleontology when searching for a connection between terrestrial major comet or asteroid impacts and mass extinctions of species.
232 - S. Takizawa , H. Katsuragi 2019
Although a large number of astronomical craters are actually produced by the oblique impacts onto inclined surfaces, most of the laboratory experiments mimicking the impact cratering have been performed by the vertical impact onto a horizontal target surface. In previous studies on the effects of oblique impact and inclined terrain, only one of the impact angle $varphi$ or target inclination angle $theta$ has been varied in the experiments. Therefore, we perform impact-cratering experiments by systematically varying both $varphi$ and $theta$. A solid projectile of diameter $D_{rm i}=6$~mm is impacted onto a sand surface with the range of impact velocity $v_{rm i}=7$--$97$~m~s$^{-1}$. From the experimental result, we develop scaling laws for the crater dimensions on the basis of $Pi$-group scaling. As a result, the crater dimensions such as cavity volume, diameter, aspect ratio, and depth-diameter ratio can be scaled by the factors $sin varphi$ and $cos theta$ as well as the usual impact parameters ($v_{rm i}$, $D_{rm i}$, density of projectile, and surface gravity). Finally, we consider the possible application of the obtained scaling laws to the estimate of impact conditions (e.g., impact speed and impact angle) in natural crater records.
We reexamine the popular belief that a telluric planet or satellite on an eccentric orbit can, outside a spin-orbit resonance, be captured in a quasi-static tidal equilibrium called pseudosynchronous rotation. The existence of such configurations was deduced from oversimplified tidal models assuming either a constant tidal torque or a torque linear in the tidal frequency. A more accurate treatment requires that the torque be decomposed into the Darwin-Kaula series over the tidal modes, and that this decomposition be combined with a realistic choice of rheological properties of the mantle. This development demonstrates that there exist no stable equilibrium states for solid planets and moons, other than spin-orbit resonances.
Metallic bodies that were the cores of differentiated bodies are sources of iron meteorites and are considered to have formed early in the terrestrial planet region before migrating to the main asteroid belt. Surface temperatures and mutual collision velocities differ between the terrestrial planet region and the main asteroid belt. To investigate the dependence of crater shape on temperature, velocity and impactor density, we conducted impact experiments on room- and low-temperature iron meteorite and iron alloy targets (carbon steel SS400 and iron-nickel alloy) with velocities of 0.8-7 km/s. The projectiles were rock cylinders and metal spheres and cylinders. Oblique impact experiments were also conducted using stainless steel projectiles and SS400 steel targets which produced more prominent radial patterns downrange at room temperature than at low temperature. Crater diameters and depths were measured and compiled using non-dimensional parameter sets based on the $pi$-group crater scaling relations. Two-dimensional numerical simulations were conducted using iSALE-2D code with the Johnson-Cook strength model. Both experimental and numerical results showed that the crater depth and diameter decreased with decreasing temperature, which strengthened the target, and with decreasing impact velocity. The decreasing tendency was more prominent for depth than for diameter, i.e., the depth/diameter ratio was smaller for the low temperature and low velocity conditions. The depth/diameter ratios of craters formed by rock projectiles were shallower than those of craters formed by metallic projectiles. Our results imply that the frequency distribution of the depth/diameter ratio for craters on the surface of metallic bodies may be used as a probe of the past impact environment of metallic bodies.
131 - S. Marchi 2010
The cratering history of main belt asteroid (2867) Steins has been investigated using OSIRIS imagery acquired during the Rosetta flyby that took place on the 5th of September 2008. For this purpose, we applied current models describing the formation and evolution of main belt asteroids, that provide the rate and velocity distributions of impactors. These models coupled with appropriate crater scaling laws, allow the cratering history to be estimated. Hence, we derive Steins cratering retention age, namely the time lapsed since its formation or global surface reset. We also investigate the influence of various factors -like bulk structure and crater erasing- on the estimated age, which spans from a few hundred Myrs to more than 1Gyr, depending on the adopted scaling law and asteroid physical parameters. Moreover, a marked lack of craters smaller than about 0.6km has been found and interpreted as a result of a peculiar evolution of Steins cratering record, possibly related either to the formation of the 2.1km wide impact crater near the south pole or to YORP reshaping.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا