Do you want to publish a course? Click here

Harnessing the Web for Population-Scale Physiological Sensing: A Case Study of Sleep and Performance

116   0   0.0 ( 0 )
 Added by Tim Althoff
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Human cognitive performance is critical to productivity, learning, and accident avoidance. Cognitive performance varies throughout each day and is in part driven by intrinsic, near 24-hour circadian rhythms. Prior research on the impact of sleep and circadian rhythms on cognitive performance has typically been restricted to small-scale laboratory-based studies that do not capture the variability of real-world conditions, such as environmental factors, motivation, and sleep patterns in real-world settings. Given these limitations, leading sleep researchers have called for larger in situ monitoring of sleep and performance. We present the largest study to date on the impact of objectively measured real-world sleep on performance enabled through a reframing of everyday interactions with a web search engine as a series of performance tasks. Our analysis includes 3 million nights of sleep and 75 million interaction tasks. We measure cognitive performance through the speed of keystroke and click interactions on a web search engine and correlate them to wearable device-defined sleep measures over time. We demonstrate that real-world performance varies throughout the day and is influenced by both circadian rhythms, chronotype (morning/evening preference), and prior sleep duration and timing. We develop a statistical model that operationalizes a large body of work on sleep and performance and demonstrates that our estimates of circadian rhythms, homeostatic sleep drive, and sleep inertia align with expectations from laboratory-based sleep studies. Further, we quantify the impact of insufficient sleep on real-world performance and show that two consecutive nights with less than six hours of sleep are associated with decreases in performance which last for a period of six days. This work demonstrates the feasibility of using online interactions for large-scale physiological sensing.



rate research

Read More

Supervised machine learning applications in the health domain often face the problem of insufficient training datasets. The quantity of labelled data is small due to privacy concerns and the cost of data acquisition and labelling by a medical expert. Furthermore, it is quite common that collected data are unbalanced and getting enough data to personalize models for individuals is very expensive or even infeasible. This paper addresses these problems by (1) designing a recurrent Generative Adversarial Network to generate realistic synthetic data and to augment the original dataset, (2) enabling the generation of balanced datasets based on heavily unbalanced dataset, and (3) to control the data generation in such a way that the generated data resembles data from specific individuals. We apply these solutions for sleep apnea detection and study in the evaluation the performance of four well-known techniques, i.e., K-Nearest Neighbour, Random Forest, Multi-Layer Perceptron, and Support Vector Machine. All classifiers exhibit in the experiments a consistent increase in sensitivity and a kappa statistic increase by between 0.007 and 0.182.
Sleep is critical to human function, mediating factors like memory, mood, energy, and alertness; therefore, it is commonly conjectured that a good nights sleep is important for job performance. However, both real-world sleep behavior and job performance are hard to measure at scale. In this work, we show that peoples everyday interactions with online mobile apps can reveal insights into their job performance in real-world contexts. We present an observational study in which we objectively tracked the sleep behavior and job performance of salespeople (N = 15) and athletes (N = 19) for 18 months, using a mattress sensor and online mobile app. We first demonstrate that cumulative sleep measures are correlated with job performance metrics, showing that an hour of daily sleep loss for a week was associated with a 9.0% and 9.5% reduction in performance of salespeople and athletes, respectively. We then examine the utility of online app interaction time as a passively collectible and scalable performance indicator. We show that app interaction time is correlated with the performance of the athletes, but not the salespeople. To support that our app-based performance indicator captures meaningful variation in psychomotor function and is robust against potential confounds, we conducted a second study to evaluate the relationship between sleep behavior and app interaction time in a cohort of 274 participants. Using a generalized additive model to control for per-participant random effects, we demonstrate that participants who lost one hour of daily sleep for a week exhibited 5.0% slower app interaction times. We also find that app interaction time exhibits meaningful chronobiologically consistent correlations with sleep history, time awake, and circadian rhythms. Our findings reveal an opportunity for online app developers to generate new insights regarding cognition and productivity.
Computing devices such as laptops, tablets and mobile phones have become part of our daily lives. End users increasingly know more and more information about these devices. Further, more technically savvy end users know how such devices are being built and know how to choose one over the others. However, we cannot say the same about the Internet of Things (IoT) products. Due to its infancy nature of the marketplace, end users have very little idea about IoT products. To address this issue, we developed a method, a crowdsourced peer learning activity, supported by an online platform (OLYMPUS) to enable a group of learners to learn IoT products space better. We conducted two different user studies to validate that our tool enables better IoT education. Our method guide learners to think more deeply about IoT products and their design decisions. The learning platform we developed is open source and available for the community.
176 - Bradly Alicea 2008
This paper contributes to the human-machine interface community in two ways: as a critique of the closed-loop AC (augmented cognition) approach, and as a way to introduce concepts from complex systems and systems physiology into the field. Of particular relevance is a comparison of the inverted-U (or Gaussian) model of optimal performance and multidimensional fitness landscape model. Hypothetical examples will be given from human physiology and learning and memory. In particular, a four-step model will be introduced that is proposed as a better means to characterize multivariate systems during behavioral processes with complex dynamics such as learning. Finally, the alternate approach presented herein is considered as a preferable design alternate in human-machine systems. It is within this context that future directions are discussed.
Atomizing various Web activities by replacing human to human interactions on the Internet has been made indispensable due to its enormous growth. However, bots also known as Web-bots which have a malicious intend and pretending to be humans pose a severe threat to various services on the Internet that implicitly assume a human interaction. Accordingly, Web service providers before allowing access to such services use various Human Interaction Proofs (HIPs) to authenticate that the user is a human and not a bot. Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) is a class of HIPs tests and are based on Artificial Intelligence. These tests are easier for humans to qualify and tough for bots to simulate. Several Web services use CAPTCHAs as a defensive mechanism against automated Web-bots. In this paper, we review the existing CAPTCHA schemes that have been proposed or are being used to protect various Web services. We classify them in groups and compare them with each other in terms of security and usability. We present general method used to generate and break text-based and image-based CAPTCHAs. Further, we discuss various security and usability issues in CAPTCHA design and provide guidelines for improving their robustness and usability.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا