Do you want to publish a course? Click here

Online Mobile App Usage as an Indicator of Sleep Behavior and Job Performance

72   0   0.0 ( 0 )
 Added by Chunjong Park
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Sleep is critical to human function, mediating factors like memory, mood, energy, and alertness; therefore, it is commonly conjectured that a good nights sleep is important for job performance. However, both real-world sleep behavior and job performance are hard to measure at scale. In this work, we show that peoples everyday interactions with online mobile apps can reveal insights into their job performance in real-world contexts. We present an observational study in which we objectively tracked the sleep behavior and job performance of salespeople (N = 15) and athletes (N = 19) for 18 months, using a mattress sensor and online mobile app. We first demonstrate that cumulative sleep measures are correlated with job performance metrics, showing that an hour of daily sleep loss for a week was associated with a 9.0% and 9.5% reduction in performance of salespeople and athletes, respectively. We then examine the utility of online app interaction time as a passively collectible and scalable performance indicator. We show that app interaction time is correlated with the performance of the athletes, but not the salespeople. To support that our app-based performance indicator captures meaningful variation in psychomotor function and is robust against potential confounds, we conducted a second study to evaluate the relationship between sleep behavior and app interaction time in a cohort of 274 participants. Using a generalized additive model to control for per-participant random effects, we demonstrate that participants who lost one hour of daily sleep for a week exhibited 5.0% slower app interaction times. We also find that app interaction time exhibits meaningful chronobiologically consistent correlations with sleep history, time awake, and circadian rhythms. Our findings reveal an opportunity for online app developers to generate new insights regarding cognition and productivity.



rate research

Read More

Human cognitive performance is critical to productivity, learning, and accident avoidance. Cognitive performance varies throughout each day and is in part driven by intrinsic, near 24-hour circadian rhythms. Prior research on the impact of sleep and circadian rhythms on cognitive performance has typically been restricted to small-scale laboratory-based studies that do not capture the variability of real-world conditions, such as environmental factors, motivation, and sleep patterns in real-world settings. Given these limitations, leading sleep researchers have called for larger in situ monitoring of sleep and performance. We present the largest study to date on the impact of objectively measured real-world sleep on performance enabled through a reframing of everyday interactions with a web search engine as a series of performance tasks. Our analysis includes 3 million nights of sleep and 75 million interaction tasks. We measure cognitive performance through the speed of keystroke and click interactions on a web search engine and correlate them to wearable device-defined sleep measures over time. We demonstrate that real-world performance varies throughout the day and is influenced by both circadian rhythms, chronotype (morning/evening preference), and prior sleep duration and timing. We develop a statistical model that operationalizes a large body of work on sleep and performance and demonstrates that our estimates of circadian rhythms, homeostatic sleep drive, and sleep inertia align with expectations from laboratory-based sleep studies. Further, we quantify the impact of insufficient sleep on real-world performance and show that two consecutive nights with less than six hours of sleep are associated with decreases in performance which last for a period of six days. This work demonstrates the feasibility of using online interactions for large-scale physiological sensing.
Smartphone-based contact-tracing apps are a promising solution to help scale up the conventional contact-tracing process. However, low adoption rates have become a major issue that prevents these apps from achieving their full potential. In this paper, we present a national-scale survey experiment ($N = 1963$) in the U.S. to investigate the effects of app design choices and individual differences on COVID-19 contact-tracing app adoption intentions. We found that individual differences such as prosocialness, COVID-19 risk perceptions, general privacy concerns, technology readiness, and demographic factors played a more important role than app design choices such as decentralized design vs. centralized design, location use, app providers, and the presentation of security risks. Certain app designs could exacerbate the different preferences in different sub-populations which may lead to an inequality of acceptance to certain app design choices (e.g., developed by state health authorities vs. a large tech company) among different groups of people (e.g., people living in rural areas vs. people living in urban areas). Our mediation analysis showed that ones perception of the public health benefits offered by the app and the adoption willingness of other people had a larger effect in explaining the observed effects of app design choices and individual differences than ones perception of the apps security and privacy risks. With these findings, we discuss practical implications on the design, marketing, and deployment of COVID-19 contact-tracing apps in the U.S.
Augmented Reality (AR) bridges the gap between the physical and virtual world. Through overlaying graphics on natural environments, users can immerse themselves in a tailored environment. This offers great benefits to mobile tourism, where points of interest (POIs) can be annotated on a smartphone screen. While a variety of apps currently exist, usability issues can discourage users from embracing AR. Interfaces can become cluttered with icons, with POI occlusion posing further challenges. In this paper, we use user-centred design (UCD) to develop an AR tourism app. We solicit requirements through a synthesis of domain analysis, tourist observation and semi-structured interviews. Whereas previous user-centred work has designed mock-ups, we iteratively develop a full Android app. This includes overhead maps and route navigation, in addition to a detailed AR browser. The final product is evaluated by 20 users, who participate in a tourism task in a UK city. Users regard the system as usable and intuitive, and suggest the addition of further customisation. We finish by critically analysing the challenges of a user-centred methodology.
Online health communities offer the promise of support benefits to users, in particular because these communities enable users to find peers with similar experiences. Building mutually supportive connections between peers is a key motivation for using online health communities. However, a users role in a community may influence the formation of peer connections. In this work, we study patterns of peer connections between two structural health roles: patient and non-professional caregiver. We examine user behavior in an online health community where finding peers is not explicitly supported. This context lets us use social network analysis methods to explore the growth of such connections in the wild and identify users peer communication preferences. We investigated how connections between peers were initiated, finding that initiations are more likely between two authors who have the same role and who are close within the broader communication network. Relationships are also more likely to form and be more interactive when authors have the same role. Our results have implications for the design of systems supporting peer communication, e.g. peer-to-peer recommendation systems.
Crowdsourcing mobile users network performance has become an effective way of understanding and improving mobile network performance and user quality-of-experience. However, the current measurement method is still based on the landline measurement paradigm in which a measurement app measures the path to fixed (measurement or web) servers. In this work, we introduce a new paradigm of measuring per-app mobile network performance. We design and implement MopEye, an Android app to measure network round-trip delay for each app whenever there is app traffic. This opportunistic measurement can be conducted automatically without users intervention. Therefore, it can facilitate a large-scale and long-term crowdsourcing of mobile network performance. In the course of implementing MopEye, we have overcome a suite of challenges to make the continuous latency monitoring lightweight and accurate. We have deployed MopEye to Google Play for an IRB-approved crowdsourcing study in a period of ten months, which obtains over five million measurements from 6,266 Android apps on 2,351 smartphones. The analysis reveals a number of new findings on the per-app network performance and mobile DNS performance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا