No Arabic abstract
In this paper, we propose a new combined message passing algorithm which allows belief propagation (BP) and mean filed (MF) applied on a same factor node, so that MF can be applied to hard constraint factors. Based on the proposed message passing algorithm, a iterative receiver is designed for MIMO-OFDM systems. Both BP and MF are exploited to deal with the hard constraint factor nodes involving the multiplication of channel coefficients and data symbols to reduce the complexity of the only BP used. The numerical results show that the BER performance of the proposed low complexity receiver closely approach that of the state-of-the-art receiver, where only BP is used to handled the hard constraint factors, in the high SNRs.
In this paper, we address the message-passing receiver design for the 3D massive MIMO-OFDM systems. With the aid of the central limit argument and Taylor-series approximation, a computationally efficient receiver that performs joint channel estimation and decoding is devised by the framework of expectation propagation. Specially, the local belief defined at the channel transition function is expanded up to the second order with Wirtinger calculus, to transform the messages sent by the channel transition function to a tractable form. As a result, the channel impulse response (CIR) between each pair of antennas is estimated by Gaussian message passing. In addition, a variational expectation-maximization (EM)-based method is derived to learn the channel power-delay-profile (PDP). The proposed joint algorithm is assessed in 3D massive MIMO systems with spatially correlated channels, and the empirical results corroborate its superiority in terms of performance and complexity.
Physical layer security has been considered as an important security approach in wireless communications to protect legitimate transmission from passive eavesdroppers. This paper investigates the physical layer security of a wireless multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) communication system in the presence of a multiple-antenna eavesdropper. We first propose a transmit-filter-assisted secure MIMO-OFDM system which can destroy the orthogonality of eavesdroppers signals. Our proposed transmit filter can disturb the reception of eavesdropper while maintaining the quality of legitimate transmission. Then, we propose another artificial noise (AN)-assisted secure MIMO-OFDM system to further improve the security of the legitimate transmission. The time-domain AN signal is designed to disturb the reception of eavesdropper while the legitimate transmission will not be affected. Simulation results are presented to demonstrate the security performance of the proposed transmit filter design and AN-assisted scheme in the MIMO-OFDM system.
This paper investigates the capacity regions of two-receiver broadcast channels where each receiver (i) has both common and private-message requests, and (ii) knows part of the private message requested by the other receiver as side information. We first propose a transmission scheme and derive an inner bound for the two-receiver memoryless broadcast channel. We next prove that this inner bound is tight for the deterministic channel and the more capable channel, thereby establishing their capacity regions. We show that this inner bound is also tight for all classes of two-receiver broadcast channels whose capacity regions were known prior to this work. Our proposed scheme is consequently a unified capacity-achieving scheme for these classes of broadcast channels.
This paper proposes a joint transmitter-receiver design to minimize the weighted sum power under the post-processing signal-to-interference-and-noise ratio (post-SINR) constraints for all subchannels. Simulation results demonstrate that the algorithm can not only satisfy the post-SINR constraints but also easily adjust the power distribution among the users by changing the weights accordingly. Hence the algorithm can be used to alleviates the adjacent cell interference by reducing the transmitting power to the edge users without performance penalty.
The Internet of Things (IoT) could enable the development of cloud multiple-input multiple-output (MIMO) systems where internet-enabled devices can work as distributed transmission/reception entities. We expect that spatial multiplexing with distributed reception using cloud MIMO would be a key factor of future wireless communication systems. In this paper, we first review practical receivers for distributed reception of spatially multiplexed transmit data where the fusion center relies on quantized received signals conveyed from geographically separated receive nodes. Using the structures of these receivers, we propose practical channel estimation techniques for the block-fading scenario. The proposed channel estimation techniques rely on very simple operations at the received nodes while achieving near-optimal channel estimation performance as the training length becomes large.