No Arabic abstract
In this paper, we generalize the metric-based permutation test for the equality of covariance operators proposed by Pigoli et al. (2014) to the case of multiple samples of functional data. To this end, the non-parametric combination methodology of Pesarin and Salmaso (2010) is used to combine all the pairwise comparisons between samples into a global test. Different combining functions and permutation strategies are reviewed and analyzed in detail. The resulting test allows to make inference on the equality of the covariance operators of multiple groups and, if there is evidence to reject the null hypothesis, to identify the pairs of groups having different covariances. It is shown that, for some combining functions, step-down adjusting procedures are available to control for the multiple testing problem in this setting. The empirical power of this new test is then explored via simulations and compared with those of existing alternative approaches in different scenarios. Finally, the proposed methodology is applied to data from wheel running activity experiments, that used selective breeding to study the evolution of locomotor behavior in mice.
Economic data are often generated by stochastic processes that take place in continuous time, though observations may occur only at discrete times. For example, electricity and gas consumption take place in continuous time. Data generated by a continuous time stochastic process are called functional data. This paper is concerned with comparing two or more stochastic processes that generate functional data. The data may be produced by a randomized experiment in which there are multiple treatments. The paper presents a method for testing the hypothesis that the same stochastic process generates all the functional data. The test described here applies to both functional data and multiple treatments. It is implemented as a combination of two permutation tests. This ensures that in finite samples, the true and nominal probabilities that each test rejects a correct null hypothesis are equal. The paper presents upper and lower bounds on the asymptotic power of the test under alternative hypotheses. The results of Monte Carlo experiments and an application to an experiment on billing and pricing of natural gas illustrate the usefulness of the test.
The assumption of separability of the covariance operator for a random image or hypersurface can be of substantial use in applications, especially in situations where the accurate estimation of the full covariance structure is unfeasible, either for computational reasons, or due to a small sample size. However, inferential tools to verify this assumption are somewhat lacking in high-dimensional or functional {data analysis} settings, where this assumption is most relevant. We propose here to test separability by focusing on $K$-dimensional projections of the difference between the covariance operator and a nonparametric separable approximation. The subspace we project onto is one generated by the eigenfunctions of the covariance operator estimated under the separability hypothesis, negating the need to ever estimate the full non-separable covariance. We show that the rescaled difference of the sample covariance operator with its separable approximation is asymptotically Gaussian. As a by-product of this result, we derive asymptotically pivotal tests under Gaussian assumptions, and propose bootstrap methods for approximating the distribution of the test statistics. We probe the finite sample performance through simulations studies, and present an application to log-spectrogram images from a phonetic linguistics dataset.
Incorporating covariate information into functional data analysis methods can substantially improve modeling and prediction performance. However, many functional data analysis methods do not make use of covariate or supervision information, and those that do often have high computational cost or assume that only the scores are related to covariates, an assumption that is usually violated in practice. In this article, we propose a functional data analysis framework that relates both the mean and covariance function to covariate information. To facilitate modeling and ensure the covariance function is positive semi-definite, we represent it using splines and design a map from Euclidean space to the symmetric positive semi-definite matrix manifold. Our model is combined with a roughness penalty to encourage smoothness of the estimated functions in both the temporal and covariate domains. We also develop an efficient method for fast evaluation of the objective and gradient functions. Cross-validation is used to choose the tuning parameters. We demonstrate the advantages of our approach through a simulation study and an astronomical data analysis.
We propose an alternative to $k$-nearest neighbors for functional data whereby the approximating neighboring curves are piecewise functions built from a functional sample. Using a locally defined distance function that satisfies stabilization criteria, we establish pointwise and global approximation results in function spaces when the number of data curves is large enough. We exploit this feature to develop the asymptotic theory when a finite number of curves is observed at time-points given by an i.i.d. sample whose cardinality increases up to infinity. We use these results to investigate the problem of estimating unobserved segments of a partially observed functional data sample as well as to study the problem of functional classification and outlier detection. For such problems, our methods are competitive with and sometimes superior to benchmark predictions in the field.
In spatial statistics, it is often assumed that the spatial field of interest is stationary and its covariance has a simple parametric form, but these assumptions are not appropriate in many applications. Given replicate observations of a Gaussian spatial field, we propose nonstationary and nonparametric Bayesian inference on the spatial dependence. Instead of estimating the quadratic (in the number of spatial locations) entries of the covariance matrix, the idea is to infer a near-linear number of nonzero entries in a sparse Cholesky factor of the precision matrix. Our prior assumptions are motivated by recent results on the exponential decay of the entries of this Cholesky factor for Matern-type covariances under a specific ordering scheme. Our methods are highly scalable and parallelizable. We conduct numerical comparisons and apply our methodology to climate-model output, enabling statistical emulation of an expensive physical model.