Do you want to publish a course? Click here

$alpha$-$beta$ and $beta$-$gamma$ phase boundaries of solid oxygen observed by adiabatic magnetocaloric effect

94   0   0.0 ( 0 )
 Added by Toshihiro Nomura
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The magnetic-field-temperature phase diagram of solid oxygen is investigated by the adiabatic magnetocaloric effect (MCE) measurement with pulsed magnetic fields. Relatively large temperature decrease with hysteresis is observed at just below the $beta$-$gamma$ and $alpha$-$beta$ phase transition temperatures owing to the field-induced transitions. The magnetic field dependences of these phase boundaries are obtained as $T_mathrm{betagamma}(H)=43.8-1.55times10^{-3}H^2$ K and $T_mathrm{alphabeta}(H)=23.9-0.73times10^{-3}H^2$ K. The magnetic Clausius-Clapeyron equation quantitatively explains the $H$ dependence of $T_mathrm{betagamma}$, meanwhile, does not $T_mathrm{alphabeta}$. The MCE curve at $T_mathrm{betagamma}$ is of typical first-order, while the curve at $T_mathrm{alphabeta}$ seems to have both characteristics of first- and second-order transitions. We discuss the order of the $alpha$-$beta$ phase transition and propose possible reasons for the unusual behavior.



rate research

Read More

We show that epitaxial (001) thin films of multiferroic bismuth ferrite BiFeO3 are monoclinic at room temperature instead of tetragonal or Rhombohedral as reported earlier . We report a orthorhombic order-disorder beta-phase between 820C and 950C contrary to the earlier report. The transition sequence monoclinic-orthorhombic phase in (001)BiFeO3 thin film (rhombohedral-orthorhombic transition in single crystal) resembles that of BaTiO3 or PbSc1/2Ta1/2O3. The transition to the cubic $gamma$-phase causes an abrupt collapse of the bandgap toward zero (insulator-metal transition) at the orthorhombic-cubic beta-gamma transition around 950C. This transition is similar to the metal-insulator transition in Ba0.6K0.4BiO3.
The accurate prediction of solid-solid structural phase transitions at finite temperature is a challenging task, since the dynamics is so slow that direct simulations of the phase transitions by first-principles (FP) methods are typically not possible. Here, we study the $alpha$-$beta$ phase transition of Zr at ambient pressure by means of on-the-fly machine-learned force fields. These are automatically generated during FP molecular dynamics (MD) simulations without the need of human intervention, while retaining almost FP accuracy. Our MD simulations successfully reproduce the first-order displacive nature of the phase transition, which is manifested by an abrupt jump of the volume and a cooperative displacement of atoms at the phase transition temperature. The phase transition is further identified by the simulated x-ray powder diffraction, and the predicted phase transition temperature is in reasonable agreement with experiment. Furthermore, we show that using a singular value decomposition and pseudo inversion of the design matrix generally improves the machine-learned force field compared to the usual inversion of the squared matrix in the regularized Bayesian regression.
Vertical ferroelectricity where a net dipole moment appears as a result of in-plane ionic displacements has gained enormous attention following its discovery in transition metal dichalcogenides. Based on first-principles calculations, we report on the evidence of robust vertical ferroelectricity upon interlayer sliding in layered semiconducting $beta$-ZrI$_{2}$, a sister material of polar semimetals MoTe$_{2}$ and WTe$_{2}$. The microscopic origin of ferroelectricity in ZrI$_{2}$ is attributed to asymmetric shifts of electronic charges within a trilayer, revealing a subtle interplay of rigid sliding displacements and charge redistribution down to ultrathin thicknesses. We further investigate the variety of ferroelectric domain boundaries and predict a stable charged domain wall with a quasi-two-dimensional electron gas and a high built-in electric field that can increase electron mobility and electromechanical response in multifunctional devices. Semiconducting behaviour and a small switching barrier of ZrI$_{2}$ hold promise for novel ferroelectric applications, and our results provide important insights for further development of slidetronics ferroelectricity.
Comprehensive magnetic-field-temperature ($H$-$T$) phase diagram of solid oxygen including the $theta$ phase is discussed in the context of the ultrahigh-field measurement and the magnetocaloric effect (MCE) measurement. The problems originating from the short duration of the pulse field, non-equilibrium condition and MCEs, are pointed out and dealt with. The obtained phase diagram manifests the entropy relation between the phases as $S_theta sim S_alpha<S_beta<<S_gamma$.
The compounds, PrCo9Si4 and NdCo9Si4, have been recently reported to exhibit first-order ferromagnetic transitions near 24 K. We have subjected this compound for further characterization by magnetization, heat-capacity and electrical resistivity measurements at low temperatures in the presence of magnetic fields, particularly to probe magnetocaloric effect and magnetoresistance. The compounds are found to exhibit rather modest magnetocaloric effect at low temperatures peaking at Curie temperature, tracking the behavior of magnetoresistance. The magnetic transition does not appear to be first order in its character.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا