No Arabic abstract
We propose a method for multi-person detection and 2-D pose estimation that achieves state-of-art results on the challenging COCO keypoints task. It is a simple, yet powerful, top-down approach consisting of two stages. In the first stage, we predict the location and scale of boxes which are likely to contain people; for this we use the Faster RCNN detector. In the second stage, we estimate the keypoints of the person potentially contained in each proposed bounding box. For each keypoint type we predict dense heatmaps and offsets using a fully convolutional ResNet. To combine these outputs we introduce a novel aggregation procedure to obtain highly localized keypoint predictions. We also use a novel form of keypoint-based Non-Maximum-Suppression (NMS), instead of the cruder box-level NMS, and a novel form of keypoint-based confidence score estimation, instead of box-level scoring. Trained on COCO data alone, our final system achieves average precision of 0.649 on the COCO test-dev set and the 0.643 test-standard sets, outperforming the winner of the 2016 COCO keypoints challenge and other recent state-of-art. Further, by using additional in-house labeled data we obtain an even higher average precision of 0.685 on the test-dev set and 0.673 on the test-standard set, more than 5% absolute improvement compared to the previous best performing method on the same dataset.
The rapid development of autonomous driving, abnormal behavior detection, and behavior recognition makes an increasing demand for multi-person pose estimation-based applications, especially on mobile platforms. However, to achieve high accuracy, state-of-the-art methods tend to have a large model size and complex post-processing algorithm, which costs intense computation and long end-to-end latency. To solve this problem, we propose an architecture optimization and weight pruning framework to accelerate inference of multi-person pose estimation on mobile devices. With our optimization framework, we achieve up to 2.51x faster model inference speed with higher accuracy compared to representative lightweight multi-person pose estimator.
We present VoxelTrack for multi-person 3D pose estimation and tracking from a few cameras which are separated by wide baselines. It employs a multi-branch network to jointly estimate 3D poses and re-identification (Re-ID) features for all people in the environment. In contrast to previous efforts which require to establish cross-view correspondence based on noisy 2D pose estimates, it directly estimates and tracks 3D poses from a 3D voxel-based representation constructed from multi-view images. We first discretize the 3D space by regular voxels and compute a feature vector for each voxel by averaging the body joint heatmaps that are inversely projected from all views. We estimate 3D poses from the voxel representation by predicting whether each voxel contains a particular body joint. Similarly, a Re-ID feature is computed for each voxel which is used to track the estimated 3D poses over time. The main advantage of the approach is that it avoids making any hard decisions based on individual images. The approach can robustly estimate and track 3D poses even when people are severely occluded in some cameras. It outperforms the state-of-the-art methods by a large margin on three public datasets including Shelf, Campus and CMU Panoptic.
We present an approach to estimate 3D poses of multiple people from multiple camera views. In contrast to the previous efforts which require to establish cross-view correspondence based on noisy and incomplete 2D pose estimations, we present an end-to-end solution which directly operates in the $3$D space, therefore avoids making incorrect decisions in the 2D space. To achieve this goal, the features in all camera views are warped and aggregated in a common 3D space, and fed into Cuboid Proposal Network (CPN) to coarsely localize all people. Then we propose Pose Regression Network (PRN) to estimate a detailed 3D pose for each proposal. The approach is robust to occlusion which occurs frequently in practice. Without bells and whistles, it outperforms the state-of-the-arts on the public datasets. Code will be released at https://github.com/microsoft/multiperson-pose-estimation-pytorch.
Multi-person pose estimation in the wild is challenging. Although state-of-the-art human detectors have demonstrated good performance, small errors in localization and recognition are inevitable. These errors can cause failures for a single-person pose estimator (SPPE), especially for methods that solely depend on human detection results. In this paper, we propose a novel regional multi-person pose estimation (RMPE) framework to facilitate pose estimation in the presence of inaccurate human bounding boxes. Our framework consists of three components: Symmetric Spatial Transformer Network (SSTN), Parametric Pose Non-Maximum-Suppression (NMS), and Pose-Guided Proposals Generator (PGPG). Our method is able to handle inaccurate bounding boxes and redundant detections, allowing it to achieve a 17% increase in mAP over the state-of-the-art methods on the MPII (multi person) dataset.Our model and source codes are publicly available.
Current methods of multi-person pose estimation typically treat the localization and the association of body joints separately. It is convenient but inefficient, leading to additional computation and a waste of time. This paper, however, presents a novel framework PoseDet (Estimating Pose by Detection) to localize and associate body joints simultaneously at higher inference speed. Moreover, we propose the keypoint-aware pose embedding to represent an object in terms of the locations of its keypoints. The proposed pose embedding contains semantic and geometric information, allowing us to access discriminative and informative features efficiently. It is utilized for candidate classification and body joint localization in PoseDet, leading to robust predictions of various poses. This simple framework achieves an unprecedented speed and a competitive accuracy on the COCO benchmark compared with state-of-the-art methods. Extensive experiments on the CrowdPose benchmark show the robustness in the crowd scenes. Source code is available.