Do you want to publish a course? Click here

Observation of the Crab Nebula with the HAWC Gamma-Ray Observatory

279   0   0.0 ( 0 )
 Added by John Pretz
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Crab Nebula is the brightest TeV gamma-ray source in the sky and has been used for the past 25 years as a reference source in TeV astronomy, for calibration and verification of new TeV instruments. The High Altitude Water Cherenkov Observatory (HAWC), completed in early 2015, has been used to observe the Crab Nebula at high significance across nearly the full spectrum of energies to which HAWC is sensitive. HAWC is unique for its wide field-of-view, nearly 2 sr at any instant, and its high-energy reach, up to 100 TeV. HAWCs sensitivity improves with the gamma-ray energy. Above $sim$1 TeV the sensitivity is driven by the best background rejection and angular resolution ever achieved for a wide-field ground array. We present a time-integrated analysis of the Crab using 507 live days of HAWC data from 2014 November to 2016 June. The spectrum of the Crab is fit to a function of the form $phi(E) = phi_0 (E/E_{0})^{-alpha -betacdot{rm{ln}}(E/E_{0})}$. The data is well-fit with values of $alpha=2.63pm0.03$, $beta=0.15pm0.03$, and log$_{10}(phi_0~{rm{cm}^2}~{rm{s}}~{rm{TeV}})=-12.60pm0.02$ when $E_{0}$ is fixed at 7 TeV and the fit applies between 1 and 37 TeV. Study of the systematic errors in this HAWC measurement is discussed and estimated to be $pm$50% in the photon flux between 1 and 37 TeV. Confirmation of the Crab flux serves to establish the HAWC instruments sensitivity for surveys of the sky. The HAWC survey will exceed sensitivity of current-generation observatories and open a new view of 2/3 of the sky above 10 TeV.

rate research

Read More

HAGAR is a system of seven Non-imaging Atmospheric Cherenkov Telescopes located at Hanle in the Ladakh region of the Indian Himalayas at an altitude of 4270 meters {it amsl}. Since 2008, we have observed the Crab Nebula to assess the performance of the HAGAR telescopes. We describe the analysis technique for the estimation of $gamma$-ray signal amidst cosmic ray background. The consolidated results spanning nine years of the Crab nebula observations show long term performance of the HAGAR telescopes. Based on about 219 hours of data, we report the detection of $gamma$-rays from the Crab Nebula at a significance level of about 20$sigma$, corresponding to a time averaged flux of (1.64$pm$0.09) $times10^{-10}$ photons cm$^{-2}$ sec$^{-1}$ above 230 GeV. Also, we perform a detailed study of possible systematic effects in our analysis method on data taken with the HAGAR telescopes.
The High Altitude Water Cherenkov (HAWC) Observatory is a TeV gamma-ray detector, completed in early 2015. HAWC started science operations in August 2013 with a third of the detector taking data. Several known gamma-ray sources have already been detected with the first HAWC data. Among these sources, the Crab Nebula, the brightest steady gamma-ray source at very high energies in our Galaxy, has been detected with high significance. In this contribution I will present the results of the observations of the Crab Nebula with HAWC, including time variability, and the detector performance based on early data.
We present the first catalog of TeV gamma-ray sources realized with the recently completed High Altitude Water Cherenkov Observatory (HAWC). It is the most sensitive wide field-of-view TeV telescope currently in operation, with a 1-year survey sensitivity of ~5-10% of the flux of the Crab Nebula. With an instantaneous field of view >1.5 sr and >90% duty cycle, it continuously surveys and monitors the sky for gamma ray energies between hundreds GeV and tens of TeV. HAWC is located in Mexico at a latitude of 19 degree North and was completed in March 2015. Here, we present the 2HWC catalog, which is the result of the first source search realized with the complete HAWC detector. Realized with 507 days of data and represents the most sensitive TeV survey to date for such a large fraction of the sky. A total of 39 sources were detected, with an expected contamination of 0.5 due to background fluctuation. Out of these sources, 16 are more than one degree away from any previously reported TeV source. The source list, including the position measurement, spectrum measurement, and uncertainties, is reported. Seven of the detected sources may be associated with pulsar wind nebulae, two with supernova remnants, two with blazars, and the remaining 23 have no firm identification yet.
We present results from daily monitoring of gamma rays in the energy range $sim0.5$ to $sim100$ TeV with the first 17 months of data from the High Altitude Water Cherenkov (HAWC) Observatory. Its wide field of view of 2 steradians and duty cycle of $>95$% are unique features compared to other TeV observatories that allow us to observe every source that transits over HAWC for up to $sim6$ hours each sidereal day. This regular sampling yields unprecedented light curves from unbiased measurements that are independent of seasons or weather conditions. For the Crab Nebula as a reference source we find no variability in the TeV band. Our main focus is the study of the TeV blazars Markarian (Mrk) 421 and Mrk 501. A spectral fit for Mrk 421 yields a power law index $Gamma=2.21 pm0.14_{mathrm{stat}}pm0.20_{mathrm{sys}}$ and an exponential cut-off $E_0=5.4 pm 1.1_{mathrm{stat}}pm 1.0_{mathrm{sys}}$ TeV. For Mrk 501, we find an index $Gamma=1.60pm 0.30_{mathrm{stat}} pm 0.20_{mathrm{sys}}$ and exponential cut-off $E_0=5.7pm 1.6_{mathrm{stat}} pm 1.0_{mathrm{sys}}$ TeV. The light curves for both sources show clear variability and a Bayesian analysis is applied to identify changes between flux states. The highest per-transit fluxes observed from Mrk 421 exceed the Crab Nebula flux by a factor of approximately five. For Mrk 501, several transits show fluxes in excess of three times the Crab Nebula flux. In a comparison to lower energy gamma-ray and X-ray monitoring data with comparable sampling we cannot identify clear counterparts for the most significant flaring features observed by HAWC.
We describe measurements of GeV and TeV cosmic rays with the High-Altitude Water Cherenkov Gamma-Ray Observatory, or HAWC. The measurements include the observation of the shadow of the moon; the observation of small-scale and large-scale angular clustering of the TeV cosmic rays; the prospects for measurement of transient solar events with HAWC; and the observation of Forbush decreases with the HAWC engineering array and HAWC-30.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا