We present two variational formulae for the capacity in the context of non-selfadjoint elliptic operators. The minimizers of these variational problems are expressed as solutions of boundary-value elliptic equations. We use these principles to provide a sharp estimate for the transition times between two different wells for non-reversible diffusion processes. This estimate permits to describe the metastable behavior of the system.
We consider small perturbations of a dynamical system on the one-dimensional torus. We derive sharp estimates for the pre-factor of the stationary state, we examine the asymptotic behavior of the solutions of the Hamilton-Jacobi equation for the pre-factor, we compute the capacities between disjoint sets, and we prove the metastable behavior of the process among the deepest wells following the martingale approach. We also present a bound for the probability that a Markov process hits a set before some fixed time in terms of the capacity of an enlarged process.
We consider some compact non-selfadjoint perturbations of fibered one-dimensional discrete Schrodinger operators. We show that the perturbed operator exhibits finite discrete spectrum under suitable- regularity conditions.
One of the many problems to which J.S. Dowker devoted his attention is the effect of a conical singularity in the base manifold on the behavior of the quantum fields. In particular, he studied the small-$t$ asymptotic expansion of the heat-kernel trace on a cone and its effects on physical quantities, as the Casimir energy. In this article we review some peculiar results found in the last decade, regarding the appearance of non-standard powers of $t$, and even negative integer powers of $log{t}$, in this asymptotic expansion for the selfadjoint extensions of some symmetric operators with singular coefficients. Similarly, we show that the $zeta$-function associated to these selfadjoint extensions presents an unusual analytic structure.
The~numerical solutions to a non-linear Fractional Fokker--Planck (FFP) equation are studied estimating the generalized diffusion coefficients. The~aim is to model anomalous diffusion using an FFP description with fractional velocity derivatives and Langevin dynamics where L{e}vy fluctuations are introduced to model the effect of non-local transport due to fractional diffusion in velocity space. Distribution functions are found using numerical means for varying degrees of fractionality of the stable L{e}vy distribution as solutions to the FFP equation. The~statistical properties of the distribution functions are assessed by a generalized normalized expectation measure and entropy and modified transport coefficient. The~transport coefficient significantly increases with decreasing fractality which is corroborated by analysis of experimental data.
C. Landim
,M. Mariani
,I. Seo
.
(2017)
.
"Dirichlets and Thomsons principles for non-selfadjoint elliptic operators with application to non-reversible metastable diffusion processes"
.
Claudio Landim
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا