Do you want to publish a course? Click here

Non-Linear Langevin and Fractional Fokker-Planck Equations for Anomalous Diffusion by Levy Stable Processes

61   0   0.0 ( 0 )
 Added by Johan Anderson
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The~numerical solutions to a non-linear Fractional Fokker--Planck (FFP) equation are studied estimating the generalized diffusion coefficients. The~aim is to model anomalous diffusion using an FFP description with fractional velocity derivatives and Langevin dynamics where L{e}vy fluctuations are introduced to model the effect of non-local transport due to fractional diffusion in velocity space. Distribution functions are found using numerical means for varying degrees of fractionality of the stable L{e}vy distribution as solutions to the FFP equation. The~statistical properties of the distribution functions are assessed by a generalized normalized expectation measure and entropy and modified transport coefficient. The~transport coefficient significantly increases with decreasing fractality which is corroborated by analysis of experimental data.



rate research

Read More

We study homogenization for a class of generalized Langevin equations (GLEs) with state-dependent coefficients and exhibiting multiple time scales. In addition to the small mass limit, we focus on homogenization limits, which involve taking to zero the inertial time scale and, possibly, some of the memory time scales and noise correlation time scales. The latter are meaningful limits for a class of GLEs modeling anomalous diffusion. We find that, in general, the limiting stochastic differential equations (SDEs) for the slow degrees of freedom contain non-trivial drift correction terms and are driven by non-Markov noise processes. These results follow from a general homogenization theorem stated and proven here. We illustrate them using stochastic models of particle diffusion.
Anomalous dynamics characterized by non-Gaussian probability distributions (PDFs) and/or temporal long-range correlations can cause subtle modifications of conventional fluctuation relations. As prototypes we study three variants of a generic time-fractional Fokker-Planck equation with constant force. Type A generates superdiffusion, type B subdiffusion and type C both super- and subdiffusion depending on parameter variation. Furthermore type C obeys a fluctuation-dissipation relation whereas A and B do not. We calculate analytically the position PDFs for all three cases and explore numerically their strongly non-Gaussian shapes. While for type C we obtain the conventional transient work fluctuation relation, type A and type B both yield deviations by featuring a coefficient that depends on time and by a nonlinear dependence on the work. We discuss possible applications of these types of dynamics and fluctuation relations to experiments.
91 - F. Benitez , C. Duclut , H. Chate 2016
For reaction-diffusion processes with at most bimolecular reactants, we derive well-behaved, numerically tractable, exact Langevin equations that govern a stochastic variable related to the response field in field theory. Using duality relations, we show how the particle number and other quantities of interest can be computed. Our work clarifies long-standing conceptual issues encountered in field-theoretical approaches and paves the way for systematic numerical and theoretical analyses of reaction-diffusion problems.
We obtain exact results for fractional equations of Fokker-Planck type using evolution operator method. We employ exact forms of one-sided Levy stable distributions to generate a set of self-reproducing solutions. Explicit cases are reported and studied for various fractional order of derivatives, different initial conditions, and for differe
76 - Choon-Lin Ho 2021
A procedure is presented for solving the Fokker-Planck equation with constant diffusion but non-stationary drift. It is based on the correspondence between the Fokker-Planck equation and the non-stationary Schrodinger equation. The formalism of supersymmetric quantum mechanics is extended by applying the Darboux transformation directly to the non-stationary Schrodinger equation. From a solution of a Fokker-Planck equation a solution of the Darboux partner is obtained. For drift coefficients satisfying the condition of shape invariance, a supersymmetric hierarchy of Fokker-Planck equations with solutions related by the Darboux transformation is obtained.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا