Do you want to publish a course? Click here

Sustainable Incentives for Mobile Crowdsensing: Auctions, Lotteries, and Trust and Reputation Systems

383   0   0.0 ( 0 )
 Added by Tony T. Luo
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Proper incentive mechanisms are critical for mobile crowdsensing systems to motivate people to actively and persistently participate. This article provides an exposition of design principles of six incentive mechanisms, drawing special attention to the sustainability issue. We cover three primary classes of incentive mechanisms: auctions, lotteries, and trust and reputation systems, as well as three other frameworks of promising potential: bargaining games, contract theory, and market-driven mechanisms.



rate research

Read More

The salient features of blockchain, such as decentralisation and transparency, have allowed the development of Decentralised Trust and Reputation Management Systems (DTRMS), which mainly aim to quantitatively assess the trustworthiness of the network participants and help to protect the network from adversaries. In the literature, proposals of DTRMS have been applied to various Cyber-physical Systems (CPS) applications, including supply chains, smart cities and distributed energy trading. In this chapter, we outline the building blocks of a generic DTRMS and discuss how it can benefit from blockchain. To highlight the significance of DTRMS, we present the state-of-the-art of DTRMS in various field of CPS applications. In addition, we also outline challenges and future directions in developing DTRMS for CPS.
Mobile Crowdsensing has shown a great potential to address large-scale problems by allocating sensing tasks to pervasive Mobile Users (MUs). The MUs will participate in a Crowdsensing platform if they can receive satisfactory reward. In this paper, in order to effectively and efficiently recruit sufficient MUs, i.e., participants, we investigate an optimal reward mechanism of the monopoly Crowdsensing Service Provider (CSP). We model the rewarding and participating as a two-stage game, and analyze the MUs participation level and the CSPs optimal reward mechanism using backward induction. At the same time, the reward is designed taking the underlying social network effects amid the mobile social network into account, for motivating the participants. Namely, one MU will obtain additional benefits from information contributed or shared by local neighbours in social networks. We derive the analytical expressions for the discriminatory reward as well as uniform reward with complete information, and approximations of reward incentive with incomplete information. Performance evaluation reveals that the network effects tremendously stimulate higher mobile participation level and greater revenue of the CSP. In addition, the discriminatory reward enables the CSP to extract greater surplus from this Crowdsensing service market.
160 - Jiajun Sun 2014
Mobile crowdsensing (MCS) has been intensively explored recently due to its flexible and pervasive sensing ability. Although many incentive mechanisms have been built to attract extensive user participation, Most of these mechanisms focus only on independent task scenarios, where the sensing tasks are independent of each other. On the contrary, we focus on a periodical task scenario, where each user participates in the same type of sensing tasks periodically. In this paper, we consider the long-term user participation incentive in a general periodical MCS system from a frugality payment perspective. We explore the issue under both semi-online (the intra-period interactive process is synchronous while the inter-period interactive process is sequential and asynchronous during each period) and online user arrival models (the previous two interactive processes are sequential and asynchronous). In particular, we first propose a semi-online frugal incentive mechanism by introducing a Lyapunov method. Moreover, we also extend it to an online frugal incentive mechanism, which satisfies the constant frugality. Besides, the two mechanisms can also satisfy computational efficiency, asymptotical optimality, individual rationality and truthfulness. Through extensive simulations, we evaluate the performance and validate the theoretical properties of our online mechanisms.
Trust and reputation models for distributed, collaborative systems have been studied and applied in several domains, in order to stimulate cooperation while preventing selfish and malicious behaviors. Nonetheless, such models have received less attention in the process of specifying and analyzing formally the functionalities of the systems mentioned above. The objective of this paper is to define a process algebraic framework for the modeling of systems that use (i) trust and reputation to govern the interactions among nodes, and (ii) communication models characterized by a high level of adaptiveness and flexibility. Hence, we propose a formalism for verifying, through model checking techniques, the robustness of these systems with respect to the typical attacks conducted against webs of trust.
Mobile crowdsensing has shown a great potential to address large-scale data sensing problems by allocating sensing tasks to pervasive mobile users. The mobile users will participate in a crowdsensing platform if they can receive satisfactory reward. In this paper, to effectively and efficiently recruit sufficient number of mobile users, i.e., participants, we investigate an optimal incentive mechanism of a crowdsensing service provider. We apply a two-stage Stackelberg game to analyze the participation level of the mobile users and the optimal incentive mechanism of the crowdsensing service provider using backward induction. In order to motivate the participants, the incentive is designed by taking into account the social network effects from the underlying mobile social domain. For example, in a crowdsensing-based road traffic information sharing application, a user can get a better and accurate traffic report if more users join and share their road information. We derive the analytical expressions for the discriminatory incentive as well as the uniform incentive mechanisms. To fit into practical scenarios, we further formulate a Bayesian Stackelberg game with incomplete information to analyze the interaction between the crowdsensing service provider and mobile users, where the social structure information (the social network effects) is uncertain. The existence and uniqueness of the Bayesian Stackelberg equilibrium are validated by identifying the best response strategies of the mobile users. Numerical results corroborate the fact that the network effects tremendously stimulate higher mobile participation level and greater revenue of the crowdsensing service provider. In addition, the social structure information helps the crowdsensing service provider to achieve greater revenue gain.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا