No Arabic abstract
We provide cross sections and Maxwell rate coefficients for reactive collisions of slow electrons with BeH$^+$ ions on all the eighteen vibrational levels ($X{^{1}Sigma^{+}},v_{i}^{+}=0,1,2,dots,17$) using a Multichannel Quantum Defect Theory (MQDT) - type approach. These data on dissociative recombination, vibrational excitation and vibrational de-excitation are relevant for magnetic confinement fusion edge plasma modelling and spectroscopy, in devices with beryllium based main chamber materials, such as the International Thermonuclear Experimental Reactor (ITER) and the Joint European Torus (JET). Our results are presented in graphical form and as fitted analytical functions, the parameters of which are organized in tables.
Scattering phenomena between charged particles and highly excited Rydberg atoms are of critical importance in many processes in plasma physics and astrophysics. While a Maxwell-Boltzmann (MB) energy distribution for the charged particles is often assumed for calculations of collisional rate coefficients, in this contribution we relax this assumption and use two different energy distributions, a bimodal MB distribution and a $kappa$-distribution. Both variants share a high-energy tails occurring with higher probability than the corresponding MB distribution. The high energy tail may significantly affect rate coefficients for various processes. We focus the analysis to specific situations by showing the dependence of the rate coefficients on the principal quantum number of hydrogen atoms in n-changing collisions with electrons in the excitation and ionization channels and in a temperature range relevant to the divertor region of a tokamak device. We finally discuss the implications for diagnostics of laboratory plasmas.
We review a recently proposed phenomenological framework to establish the notions of QCD factorization and universality of jet cross sections in the heavy-ion environment. First results of a global analysis of the nuclear modification factor of inclusive jets are presented where we extract medium modified jet functions using a Monte Carlo sampling approach. We observe that gluon jets are significantly more suppressed than quark jets. In addition, we study the jet radius dependence of the inclusive jet cross section in heavy-ion collisions and comment on a recent measurement from CMS. By considering for example jet substructure observables it will be possible to test the universality of the extracted medium jet functions. We thus expect that the presented results will eventually allow for extractions of medium properties with a reduced model bias.
Results for quantum mechanical calculations of the integral cross sections and corresponding thermal rate coefficients for para-/ortho-H2+HD collisions are presented. Because of significant astrophysical interest in regard to the cooling of primodial gas the low temperature limit of para-/ortho-H2+HD is investigated. Sharp resonances in the rotational state-resolved cross sections have been calculated at low energies. These resonances are important and significantly contribute to the corresponding rotational state-resolved thermal rate coefficients, particularly at low temperatures, that is less than $T sim 100$K. Additionally in this work, the cross sections for the elastic HD+HD collision have also been calculated. We obtained quite satisfactory agreement with the results of other theoretical works and experiments.
A new method for solving the time-dependent two-center Dirac equation is developed. The time-dependent Dirac wave function is represented as a sum of atomic-like Dirac-Sturm orbitals, localized at the ions. The atomic orbitals are obtained by solving numerically the finite-difference one-center Dirac and Dirac-Sturm equations with the potential which is the sum of the exact reference-nucleus potential and a monopole-approximation potential from the other nucleus. An original procedure to calculate the two-center integrals with these orbitals is proposed. The approach is tested by calculations of the charge transfer and ionization cross sections for the H(1s)--proton collisions at proton energies from 1 keV to 100 keV. The obtained results are compared with related experimental and other theoretical data. To investigate the role of the relativistic effects, the charge transfer cross sections for the Ne^{9+}(1s)--Ne^{10+} (at energies from 0.1 to 10 MeV/u) and U^{91+}(1s)--U^{92+} (at energies from 6 to 10 MeV/u) collisions are calculated in both relativistic and nonrelativistic cases.
Three typical algorithms of Pauli blocking in the quantum molecular dynamics type models are investigated in the nuclear matter, the nucleus and the heavy ion collisions. The calculations in nuclear matter show that the blocking ratios obtained with the three algorithms are underestimated 13-25% compared to the analytical values of blocking ratios. For the finite nucleus, the spurious collisions occur around the surface of the nucleus owing to the defects of Pauli blocking algorithms. In the simulations of heavy ion collisions, the uncertainty of stopping power from different Pauli blocking algorithms is less than 5%. Furthermore, the in-medium effects of nucleon-nucleon ($NN$) cross sections on the nuclear stopping power are discussed. Our results show that the transport models calculations with free $NN$ cross sections result in the stopping power decreasing with the beam energy at the beam energy less than 300 MeV/u. To increase or decrease the values of stopping power, an enhanced or suppressed model dependent in-medium $NN$ cross section is required.